

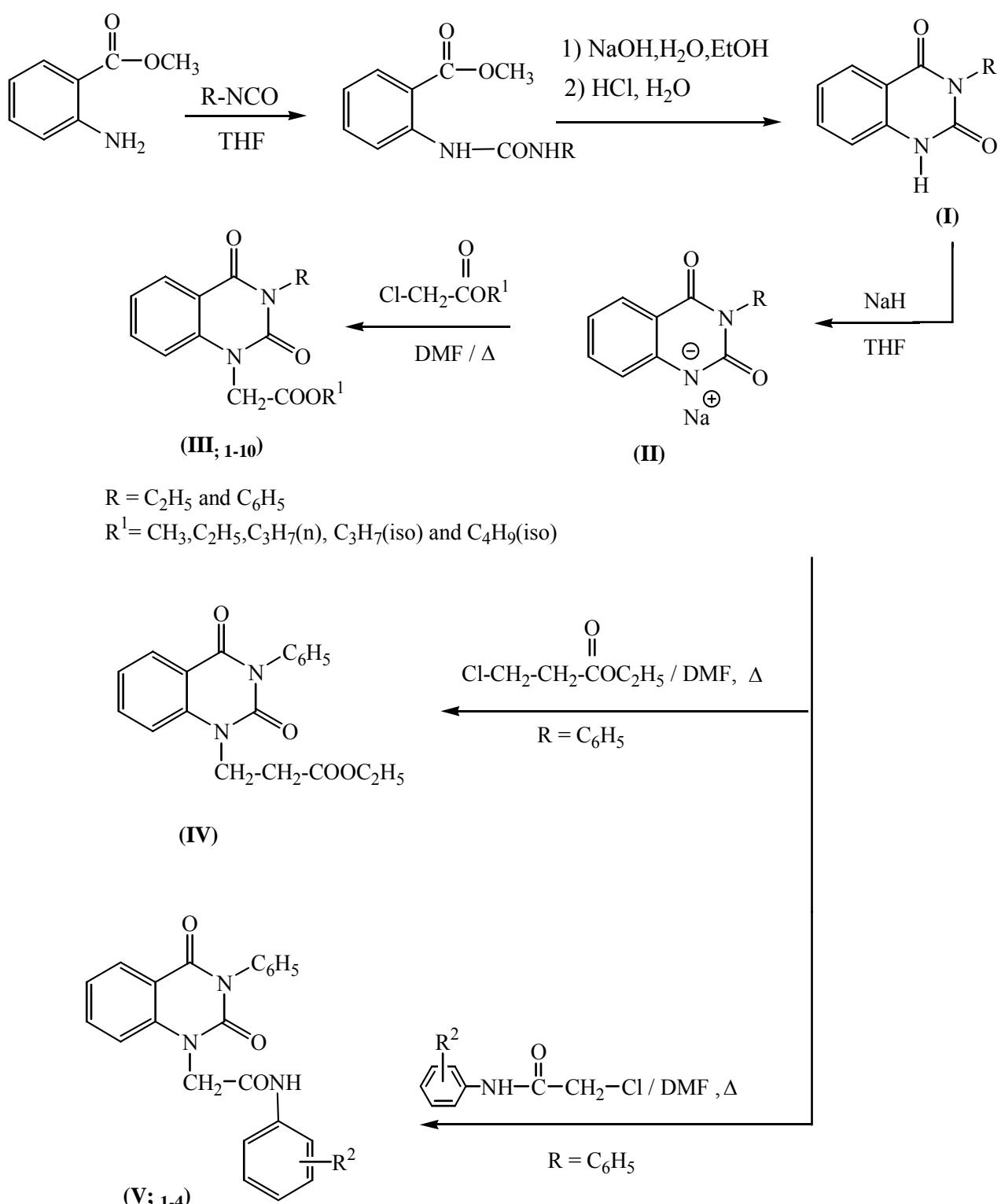
SYNTHESIS AND ANTICONVULSANT ACTIVITY OF 1,3-DISUBSTITUTED 2,4(1H,3H)QUINAZOLINEDIONE

Abdel Ghany Ali El-Helby

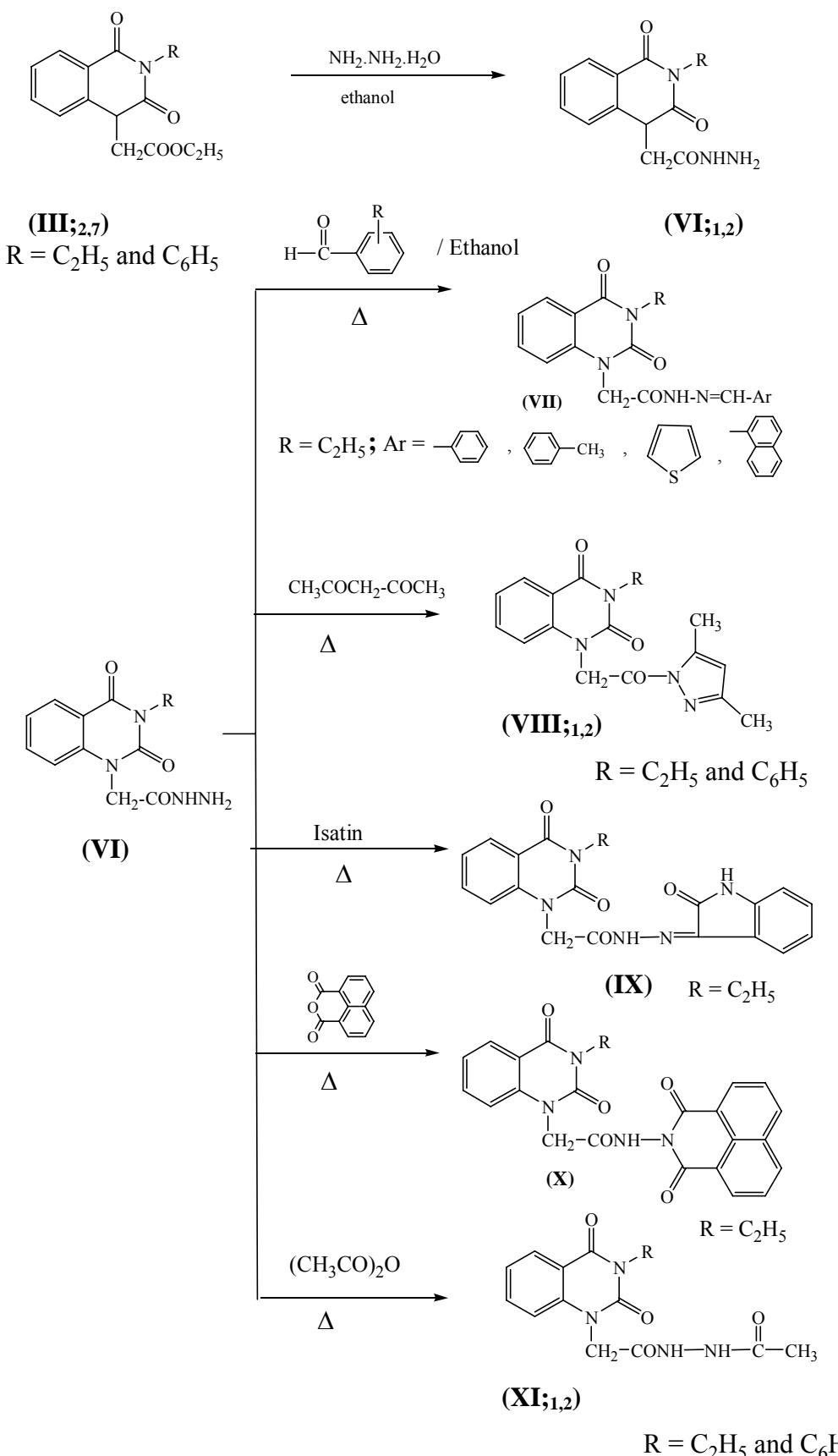
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

تم في هذا البحث تحضير مركبات جديدة من نواة الـquinazolinedione دايون وذلك عن طريق عمل ملح الصوديوم ثم تكتيفه مع خلات كلوروالأيثيل والبروبيل والكلوروأسيتانيدي و قد أمكن عمل الهيدرازيدات من الإسترات الناتجة وتفعيلها مع بعض الأدھيدات وكذلك تكتيفها مع بعض الأنهيدريدات. وتم إثبات التركيب البنائي لجميع المركبات عن طريق التحليل الدقيق لعناصر المركبات والأشعة دون الحمراء والرنين النووي المغناطيسي ومطياف الكتلة وقد تم اختبار بعض المركبات الجديدة كمضادات للشنجات العصبية على الفئران مستعملاً مادة الفينوباربیتون صوديوم كمرجع فوجد أن لها فاعلية ضعيفة وذلك نتيجة تغير مجموعة الأستر إلى الوضع 1 من الـquinazolinedione دايون مقارنة بالفاعلية العالية عندما كانت مجموعة الإسترات في الوضع 3 في الأبحاث السابقة.

Some new 2,4(1H,3H)-quinazolinedione were synthesized and characterized by elemental analysis, IR, ¹HNMR and Ms spectral data. Pharmacological evaluation of some of the synthesized compounds as anticonvulsants showed that they displayed weak anticonvulsant activity relative to phenobarbitone sodium as reference drug.


INTRODUCTION

The quinazolinedione derivatives have been reported to exhibit different pharmacological activities such as: hypnotic, anticonvulsant,^{1,2} analgesic,^{3,4} antiinflammatory,⁵ antimicrobial,⁶⁻⁸ antitubercular,⁹ serotonin reuptake inhibition,¹⁰ matrix metalloproteinase (MMP) inhibitors¹¹ and puromycin-sensitive aminopeptidase inhibitors.¹² In 1986, Ossman *et al.*¹³ synthesized some new derivatives of 1,3-disubstituted quinazolinedione which showed hypnotic and anticonvulsant activities. El-Helby^{14,15} synthesized some 1,3-disubstituted quinazolinediones and evaluated their anticonvulsant and hypnotic effects. The ester group of all of the synthesized compounds¹³⁻¹⁵ is the pharmacophoric^{14,15} group which is present at the 3-position of the quinazolinedione. In the present work, the ester group was inserted into position 1 to study its effect on the expected anticonvulsant activity. The present work was performed according Schemes 1 and 2.


EXPERIMENTAL

All melting points were carried out on a Geriffin melting point apparatus and are uncorrected. Elemental analyses were performed on CHN analyzer at the Microanalytical unit, Cairo University, Cairo, Egypt. The IR spectra were recorded on a Pye Unicam SP-1000 IR spectrophotometer at Microanalytical Unit., Cairo University. ¹HNMR were recorded on a Joel 200 MHz spectrophotometer at Faculty of Science, Cairo, University, Cairo, Egypt. and Inova 400 Cosy-Chem. buffalo.edu. at the Natural Science Complexes, Buffalo, USA. Chemical shifts are given as δ values relative to TMS as internal standard. Mass spectra were performed on Hewlett Packard 5988 (70 ev) spectrometer at the Microanalytical Unit, Cairo, University.

The following intermediates were prepared according to reported procedures which include methyl 2-(3-ethyl and 3-phenylureido) benzoate¹⁶ **II**_{1,2}, 3-ethyl and 3-phenyl-2,4-(1H,3H) quinazolinediones¹⁶ **III**_{1,2} and the sodium salts of 3-ethyl and 3-phenyl-2,4-(1H,3H) quinazolinediones **IV**_{1,2}.¹⁷

Scheme 1

Scheme 2

Alkyl 3-ethyl/3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl acetates III;_{1,10}

The sodium salts **II;_{1,2}**, 2.12 g, 2.6 g (0.01 mole) and alkyl chloroacetates 1.09 g (0.01 mole) in dimethylformamide (20 ml) were heated on water-bath for 3 hrs. The reaction mixture was poured onto ice-cold water and stirred for 30 min. The solid obtained was filtered and crystallized from ethanol (Table 1).

Ethyl 3-[3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl] propionate IV

Was prepared by interaction of the sodium salt **II;₂**, 2.6 g (0.01 mole) and ethyl chloropropionate 1.37 g (0.01 mole) in DMF as mentioned above (Table 1).

1-Arylaminocarbonylmethyl-3-ethyl/3-phenyl-2,4-(1H,3H)-quinazolinediones V;_{1,4}

Were prepared by interaction of the sodium salt **II;₂**, 2.6 g (0.01 mole) and chloroacetanilides 1.66 g (0.01 mole) in DMF as mentioned above (Table 2).

3-Ethyl/3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl acetic acid hydrazides VI;_{1,2}

A mixture of ethyl [3-ethyl and 3-phenyl]-2,4-(1H, 3H)-quinazolinedione] acetate **III;_{2,7}**, 2.48 g (0.01 mole) and hydrazine hydrate 5 ml (0.1 mole) in ethanol (20 ml) was stirred and heated at 70° for 2 hrs, then cooled. The solid obtained was filtered, washed with water and crystallized from ethanol (Table 2).

1-(Arylidenehydrazinocarbonylmethyl)-3-ethyl-2,4-(1H,3H)-quinazolindione VII;_{1,4}

A mixture of 1-[(3-ethyl)-2,4-(1H,3H)-quinazolinedione] acetic acid hydrazide **VI;₁** 2.62 g (0.01 mole) and the appropriate aldehydes (0.01 mole) in absolute ethanol (20 ml) was heated under reflux for 3 hrs. The mixture was cooled, poured onto water and the solid obtained was crystallized from ethanol (Table 2).

1-(3,5-Dimethylpyrazol-1-yl) carbonylmethyl-3-ethyl / 3-phenyl-2,4(1H,3H)-quinazolinedione VIII;_{1,2}

A mixture of 1-[(3-ethyl-3-phenyl)-2,4-(1H,3H)-quinazolinedione] acetic acid hydrazide **VI;_{1,2}**, 2.62 g and 3.1 g (0.01 mole) and acetylacetone 2 ml (0.02 mole) was heated under reflux for 2 hrs. The reaction mixture was cooled and stirred well for 15 min. until a solid

mass was separated. The solid was filtered, dried and crystallized from aqueous ethanol **VIII;₁**, m.p 187°, yield 2.28 g (70%), **VIII;₂** m.p 205°, yield 2.81 g (75%).

Analysis for **VIII;₁** C₁₇H₁₈N₄O₃, M.wt. 326.30.

	C%	H%	N%
Calcd.	62.57	5.56	17.16
Found	62.43	5.60	16.70

Analysis for **VIII;₂** C₂₁H₁₈N₄O₃, M.wt 374.39.

	C%	H%	N%
Calcd.	67.37	4.85	14.96
Found	67.23	4.99	14.89

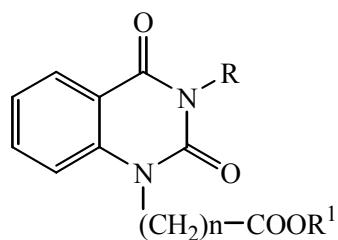
1-(Isatin hydrazinocarbonylmethyl)-3-ethyl-2,4-(1H,3H)-quinazolinedione IX

A mixture of **VI;₁**, 2.62 g (0.01 mole) and isatin 1.47 g (0.01 mole) was heated under reflux for 12 hrs in 1,4-dioxane (50 ml). The reaction mixture was concentrated and the product obtained was filtered and crystallized from ethanol m.p 290°, yield 2.94 g (75%).

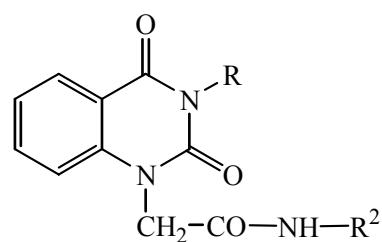
Analysis for **IX** C₂₀H₁₇N₅O₄, M. wt 391.38

	C%	H%	N%
Calcd.	61.38	4.38	17.89
Found	61.48	4.37	17.83.

1-(1,8-Naphthalimidoaminocarbonylmethyl)-3-ethyl-2,4-(1H,3H)-quinazolinedione X


A mixture of **VI;₁** 2.62 g (0.01 mole) and 1,8-naphthalic anhydride 1.98 g (0.01 mole) was heated under reflux for 4 hrs in absolute ethanol (50 ml). The reaction mixture was distilled under reduced pressure to evaporate the solvent. The solid obtained was crystallized from ethanol, m.p 295-6°, yield 2.7 g (61%).

Analysis for **X** C₂₄H₁₈N₄O₅, M. wt 442.42


	C%	H%	N%
Calcd.	65.15	4.10	12.65
Found	65.50	5.47	12.61

1-(Acetylamino carbonylmethyl)-3-ethyl and phenyl-2,4(1H,3H)-quinazoline-dione XI;_{1,2}

A mixture of the acetic acid hydrazide **VI;_{1,2}** 2.62 g and 3.1 g (0.01 mole) and acetic anhydride (20 ml) was heated under reflux overnight. Acetic anhydride was then distilled

Table 1: Physical properties of 2, 4 (1H, 3H) quinazolinediones, **III₁₋₁₀**.

Comp. No.	R	R ¹	n	Yield %	M.P, °	M. Formula M.Wt	Analyses		
							%	Calc.	Found
III₁	C ₂ H ₅	CH ₃	1	81	160-1	C ₁₃ H ₁₄ N ₂ O ₄ 262.26	C H N	59.54 5.38 10.68	59.84 5.51 10.24
III₂	C ₂ H ₅	C ₂ H ₅	1	80	90-1	C ₁₄ H ₁₆ N ₂ O ₄ 276.29	C H N	60.86 5.84 10.14	60.71 5.64 10.10
III₃	C ₂ H ₅	C ₃ H ₇ (n)	1	78	135-6	C ₁₅ H ₁₈ N ₂ O ₄ 290.31	C H N	62.06 6.25 9.65	61.99 5.72 9.59
III₄	C ₂ H ₅	C ₃ H ₇ (iso)	1	80	110-2	C ₁₅ H ₁₈ N ₂ O ₄ 290.31	C H N	62.06 6.25 9.65	61.63 5.67 9.61
III₅	C ₂ H ₅	C ₄ H ₉ (iso)	1	69	125-6	C ₁₆ H ₂₀ N ₂ O ₄ 304.34	C H N	63.14 6.62 9.20	62.20 6.67 9.15
III₆	C ₆ H ₅	CH ₃	1	75	160-1	C ₁₇ H ₁₄ N ₂ O ₄ 310.30	C H N	65.80 4.55 9.03	65.76 4.34 8.94
III₇	C ₆ H ₅	C ₂ H ₅	1	77	165-6	C ₁₈ H ₁₆ N ₂ O ₄ 324.33	C H N	66.66 4.97 8.64	66.43 4.86 8.77
III₈	C ₆ H ₅	C ₃ H ₇ (n)	1	65	141-3	C ₁₉ H ₁₈ N ₂ O ₄ 338.36	C H N	67.44 5.36 8.28	67.39 5.45 8.22
III₉	C ₆ H ₅	C ₃ H ₇ (iso)	1	67	155-6	C ₁₉ H ₁₈ N ₂ O ₄ 338.36	C H N	67.44 5.36 8.28	67.44 5.08 7.90
III₁₀	C ₆ H ₅	C ₄ H ₉ (iso)	1	61	115-6	C ₂₀ H ₂₀ N ₂ O ₄ 352.38	C H N	68.07 5.72 7.95	67.73 5.63 7.62
IV	C ₆ H ₅	C ₂ H ₅	2	63	145-7	C ₁₉ H ₁₈ N ₂ O ₄ 338.36	C H N	67.44 5.36 8.28	67.35 5.24 8.22

Table 2: Physical properties of 2, 4 (1H, 3H) quinazolinediones, **V-VII**.

Comp. No.	R	R ²	Yield %	M.P. °	M. Formula M.Wt	Alaysis		
						%	Calc.	Found
V₁	C ₆ H ₅		72	280-1	C ₂₂ H ₁₇ N ₃ O ₃ 371.39	C H N	71.15 4.61 11.31	70.95 5.05 11.20
V₂	C ₆ H ₅		71	300-2	C ₂₃ H ₁₉ N ₃ O ₃ 385.42	C H N	71.67 4.97 10.90	71.61 5.02 10.90
V₃	C ₆ H ₅		75	250-2	C ₂₃ H ₁₉ N ₃ O ₄ 401.41	C H N	68.82 4.77 10.47	68.54 4.65 10.65
V₄	C ₆ H ₅		79	280-2	C ₂₂ H ₁₆ BrN ₄ O ₃ 450.28	C H N	58.68 3.58 9.33	58.84 3.70 9.29
VI₁	C ₂ H ₅	-NH ₂	85	225-6	C ₁₂ H ₁₄ N ₄ O ₃ 262.26	C H N	54.96 5.38 21.36	54.73 5.11 21.32
VI₂	C ₆ H ₅	-NH ₂	87	250-2	C ₁₆ H ₁₄ N ₄ O ₃ 310.31	C H N	61.93 4.55 18.06	61.61 4.69 17.95
VII₁	C ₂ H ₅	N=CH	85	285-6	C ₁₉ H ₁₈ N ₄ O ₃ 350.37	C H N	65.13 5.18 15.99	65.19 5.14 16.13
VII₂	C ₂ H ₅	NHN=CH	75	275-6	C ₂₀ H ₂₀ N ₄ O ₄ 364.40	C H N	65.92 5.53 15.38	65.76 5.30 15.42
VII₃	C ₂ H ₅	NHN=CH	72	255-7	C ₁₇ H ₁₆ N ₄ O ₃ S 356.36	C H N	57.24 4.52 15.71	57.36 4.51 16.02
VII₄	C ₂ H ₅	NHN=CH	63	295-6	C ₂₃ H ₂₀ N ₄ O ₃ 400.43	C H N	68.99 5.03 13.99	69.19 5.37 13.89

under reduced pressure. The reaction mixture was cooled and the solid obtained was crystallized from ethanol. **XI₁**, m.p= 260° yield 2.13 g (70%) and **XI₂**, m.p 285° yield 2.11 g (65%).

Analysis for **XI₁** C₁₄H₁₆N₄O₄, M.wt 304.36,

	C%	H%	N%
Calcd.	55.25	5.30	18.42
Found.	54.60	5.42	18.03

Analysis for **XI₂** C₁₈H₁₆N₄O₄, M.wt 352.35

	C%	H%	N%
Calcd.	61.36	4.57	15.90
Found.	61.62	4.11	15.90

RESULTS AND DISCUSSION

Reaction of methyl anthranilate with ethyl and phenyl isocyanate in THF gave methyl 2-(3-ethyl and 3-phenylureido) benzoate¹⁶ which upon treatment with aqueous solution of 10% NaOH in ethanol and stirring over night at room temperature then acidified with HCl, the 3-ethyl and 3-phenyl-2,4-(1H,3H) quinazolinediones¹⁶ **I_{1,2}** were obtained. The latter when treated with NaH in THF afforded the corresponding sodium salt **II_{1,2}** in good yields¹⁷ which upon reaction with alkyl chloroacetates or propionates afforded the alkyl 1-[3-ethyl and 3-phenyl-2,4-(1H,3H)-quinazolinedione] acetates **III₁₋₁₀** and ethyl 1-[3-phenyl-2,4-(1H,3H)-quinazolinedione] prop-ionate **IV**. The IR spectra of compounds **III₁₋₁₀** are characterized by the appearance of an ester carbonyl band at 1726-1716 cm⁻¹, the carbonyl bands of quinazolinediones nucleus appeared at 1658 cm⁻¹ and 1606 cm⁻¹, ¹HNMR spectra of these compounds were characterized by the presence of a deshielded methylene group at δ 4.87-5.02 ppm. Reaction of the sodium salt **II₂** with chloroacetanilides in DMF afforded 1-arylamino carbonylmethyl-3-phenyl-2,4(1H,3H)-quinazolinediones **V₁₋₄**. The ¹HNMR spectra of these compounds showed singlet of 2H due to methylene group at δ 4.86-5.02 ppm and another singlet of 1H due to NH group at δ 8.00-10.35 ppm. Hydrazinolysis of the ester compounds **III_{2,7}** in ethyl alcohol by heating for 30 min. afforded the acetic acid hydrazids **VI_{1,2}**. The IR spectra of such compounds revealed the amide NH stretching

at 3210, 3330 cm⁻¹. IR, ¹HNMR and Ms of these compounds are presented in Table (3). Reaction of the hydrazides **VI_{1,2}** with the appropriate aromatic aldehydes in ethanol gave the arylidenes **VII₁₋₄**. The IR spectra of such compounds showed bands at 3293 cm⁻¹, 1694 cm⁻¹, 1671 cm⁻¹ for NH and carbonyl absorption bands respectively. ¹HNMR spectra are characterized by the presence of deshielded-CH₂- group which ranged from δ 5.33-5.35 ppm. The pyrazole derivatives **VIII_{1,2}** was obtained from the reaction of acetylacetone with the acetic acid hydrazides **VII_{1,2}** in ethanol. The ¹HNMR spectrum of compound **VIII₁** showed two singlet signals of two methyl groups at C₃ and C₅ of the pyrazole ring at δ 2.28 and δ 2.51 ppm. The singlet signal of the pyrazole proton at 4-position appeared at 6.31 ppm, the singlet of 2H of methylene group at δ 5.69 ppm. The mass spectrum of compound **VIII₂** was recorded in Table (3). Reaction of the acetic acid hydrazide **VI_{1,2}** with isatin and naphthalic anhydride in ethanol afforded compounds **IX** and **X** respectively. The mass spectra of these compounds are showed in Table (3). Reaction of the hydrazide **VI_{1,2}** with acetic anhydride afforded the acetyl derivatives **XI_{1,2}**. The IR spectra of these compounds showed strong bands at 3202 or 3207 cm⁻¹, 1708-1711 cm⁻¹ for NH and carbonyl absorption respectively. The ¹HNMR of the compounds **XI_{1,2}** showed the two singlet signals of the two NH protons at δ 9.88 and δ 10.20 ppm for the compound **XI₁** and at δ 9.88 and at δ 10.19 ppm for the compound **XI₂**.

Pharmacological testing

The anticonvulsant activity^{18,19}

The method reported by Soaje-Echague and Lim¹⁸ was adopted to assess the anticonvulsant activity of the tested compounds and the reference drug in mice.

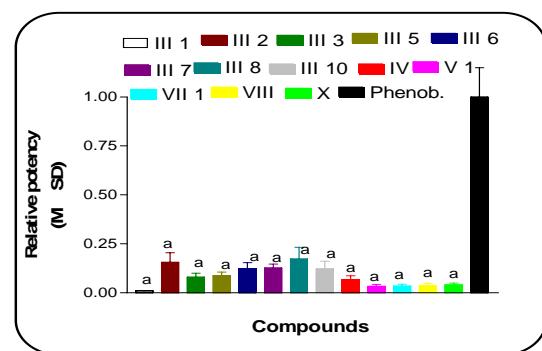
Thus each of three graded doses for each tested compound as well as for phenobarbitone was injected intraperitoneal to a group of animals. One hour later, the animals were injected subcutaneously with a dose of 100 mg/kg of pentylenetetrazole. The animals were observed for further one hour. The animal that showed no clonic seizures during a 60-minute

Table 3: Spectral data of the new compounds (III-XI).

No.		IR (cm ⁻¹), ¹ HNMR (δ , ppm), Mass (m/z, %), J (Hz)
III ₁	IR ¹ HNMR CDCl ₃	2964 (CH aliphatic), 1734 (carbonyl of ester), 1676, 1608 (two carbonyls of quinazolinedione nucleus) 1.29 (t, 3H, -CH ₂ -CH ₃ , J= 7.08 Hz), 4.16 (q, 2H, CH ₂ -CH ₃ , J= 7.02 Hz), 3.79 (s, 3H, OCH ₃), 4.91 (s, 2H, N-CH ₂ -CO), 6.95 (d, 1H, aromatic proton at C ₈ , J= 8.32 Hz), 7.26 (t, 1H, aromatic proton at C ₆ , J= 7.48 Hz), 7.63 (t, 1H, aromatic proton at C ₇ , J= 7.34 Hz), 8.26 (d, 1H, aromatic proton at C ₅ , J= 6.42 Hz).
III ₂	IR ¹ HNMR CDCl ₃	2964 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) 1.30 (doublet of triplet, 6H, 2CH ₃), 4.23 (doublet of quartet, 4H, 2CH ₂), 4.90 (s, 2H, -N-CH ₂), 6.95 (d, 1H, aromatic proton at C ₈ , J= 8.54 Hz), 7.27 (t, 1H, aromatic proton at C ₆ , J= 7.34 Hz), 7.65 (t 1H, aromatic proton at C ₇ , J= 1.78 Hz), 8.29 (d, 1H, aromatic proton at C ₅ , J= 6.38 Hz).
III ₃	IR ¹ HNMR CDCl ₃	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) 0.90 (t, 3H, OCH ₂ -CH ₂ -CH ₃ , J= 5.06 Hz), 1.29 (t, 3H, N-CH ₂ -CH ₃ , J= 5.06 Hz), 1.66 (q, 2H, OCH ₂ CH ₂ CH ₃ , J= 5.06 Hz), 4.16 (m, 4H, N-CH ₂ CH ₃ and OCH ₂ -CH ₂), 4.91 (s, 2H, N-CH ₂ COO), 6.95 (d, 1H, aromatic at C ₈ , J= 8.00 Hz), 7.26 (t, 2H, aromatic C ₆ , J= 6.06 Hz), 7.64 (t, 1H, aromatic at C ₇ , J= 1.20 Hz), 8.26 (d, 1H, aromatic C ₅ , J= 5.20 Hz).
III ₄	IR ¹ HNMR CDCl ₃	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) 1.33-1.24 (m, 9H, 2CH ₃ of CH (CH ₃) ₂ and CH ₃ of C ₂ H ₅), 4.19 (q, 2H, N-CH-CH ₃), 4.87 (s, 2H, N-CH ₂ -CO), 5.10 (m, 1H of CH-(CH ₃) ₂), 6.95 (d, 1H, aromatic proton at C ₈ , J= 6.24 Hz), 7.29 (t, 1H, aromatic proton at C ₆ , J= 8.24 Hz), 7.63 (t 1H, aromatic proton at C ₇ , J= 7.20 Hz), 8.26 (d, 1H, aromatic proton at C ₅ , J= 6.54 Hz).
III ₅	IR ¹ HNMR CDCl ₃	2966 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1654 (two carbonyls of quinazolinedione nucleus) 0.88 (d, 6H, of -CH (CH ₃) ₂ , J= 5.60 Hz), 1.29 (t, 3H, N-CH ₂ -CH ₃ , J= 5.60 Hz), 1.91 (m, 1H, -CH (CH ₃) ₂), 3.97 (d, 2H, -N-CH ₂ CO, J= 5.60 Hz), 4.17 (q, 2H, N-CH ₂ -CH ₃ , J= 5.60 Hz), 4.92 (s, 2H, -COOCH ₂), 6.97 (d, 1H, aromatic at C ₈ , J= 6.80 Hz), 7.26 (t, 1H, aromatic at C ₆ , J= 1.20 Hz), 7.63 (t, 1H, aromatic at C ₇ , J= 6.00 Hz), 8.26 (d, 1H, aromatic at C ₅ , J= 6.04 Hz).
III ₆	IR ¹ HNMR CDCl ₃	3068 (CH aliphatic), 1728 (carbonyl of ester), 1662, 1602 (two carbonyls of quinazolinedione nucleus) 3.90 (s, 3H, OCH ₃), 4.95 (s, 2H, N-CH ₂ CO), 7.01-8.31 (M, 9H, aromatic protons).
III ₇	¹ HNMR CDCl ₃	1.29 (t, 3H, OCH ₂ -CH ₃ , J= 7.16 Hz), 4.27 (q, 2H, OCH ₂ -CH ₃ , J= 7.12 Hz), 4.93 (s, 2H, N-CH ₂ CO), 7.01-8.30 (m, 9H, aromatic protons)
III ₈	¹ HNMR (Acetone-d ₆)	0.89 (t, 3H, CH ₃ , J= 5.20 Hz), 1.65 (m, 2H, CH ₂ -CH ₂ -CH ₃), 4.12 (t, 2H, OCH ₂ , J= 5.60 Hz), 5.02 (s, 2H, N-CH ₂ CO), 7.32-8.17 (m, 9H, aromatic protons)
III ₉	IR ¹ HNMR CDCl ₃	2972 (CH aliphatic), 1730 (carbonyl of ester), 1710, 1668 (two carbonyls of quinazolinedione nucleus) 1.28 (d, 6H, CH (CH ₃) ₂ , J= 6.24 Hz), 4.90 (s, 2H, N-CH ₂ CO), 5.18 (m, 1H, CH (CH ₃) ₂), 7.00-8.30 (m, 9H, aromatic protons).

Table 3: Continued.

No.		IR (cm^{-1}), ^1H NMR (δ , ppm), Mass (m/z, %), J (Hz)
III₁₀	IR ^1H NMR Acetone	2970 (CH aliphatic), 1738 (carbonyl of ester), 1712, 1666 (two carbonyls of quinazolinedione nucleus) 0.89 (d, 6H, CH (CH_3) ₂ , J= 6.80 Hz), 1.92 (m, 1H, $\text{CH}(\text{CH}_3)_2$), 3.95 (d, 2H, $\text{COOCH}_2\text{-CH}(\text{CH}_3)_2$, J= 4.80 Hz), 5.03 (s, 2H, NCH_2CO), 7.32-8.17 (m, 9H, aromatic protons).
IV	IR ^1H NMR CDCl_3	2972 (CH aliphatic), 1734 (carbonyl of ester), 1710, 1668 (two carbonyls of quinazolinedione nucleus) 1.25 (t, 3H, $\text{OCH}_2\text{-CH}_3$, J= 7.06 Hz), 4.18 (q, 2H, $\text{OCH}_2\text{-CH}_3$, J= 7.12 Hz), 2.80 (t, 2H, $\text{N-CH}_2\text{CH}_2$, J= 7.82 Hz), 4.48 (t, 2H, $-\text{CH}_2\text{CH}_2\text{CO}$, J= 7.62 Hz), 7.26-8.31 (m, 10H, aromatic protons) and CDCl_3 protons.
V₁	IR ^1H NMR DMSO-d_6	3272 (NH amidic), 1710 (amidic carbonyl) 1662, 1602 (two carbonyl of quinazolinedione nucleus) 5.01 (s, 2H, $\text{N-CH}_2\text{CO}$), 7.04-8.14 (m, 14H, aromatic protons), 10.35 (s, 1H, NH).
V₂	^1H NMR CDCl_3	2.29 (s, 3H, p- CH_3), 4.87 (s, 2H, $\text{N-CH}_2\text{CO}$), 7.09-8.28 (m, 15H, 12, aromatic protons, NH and CDCl_3).
	Ms	M/z 385 (M ⁺ , $\text{C}_{23}\text{H}_{19}\text{N}_3\text{O}_3$, 5.84%), 2.79 ($\text{C}_{16}\text{H}_{11}\text{N}_2\text{O}_3$, 56.60%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
V₃	^1H NMR CDCl_3	3.77 (s, 3H, p- OCH_3), 4.86 (s, 2H, $\text{N-CH}_2\text{CO}$), 6.65-8.33 (m, 15H, 12 aromatic protons, NH and CDCl_3).
V₄	IR	3272 (NH aliphatic), 3286 (NH, amidic), 1710 (amidic carbonyl), 1664, 1608 (two ketonic carbonyl of quinazolinedione nucleus)
	Ms	M/z 451, 499 (M, M^{+2} , 1.37, 1.30% respectively), 279 (M 96.21%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
VI₁	IR ^1H NMR CDCl_3	3328 (NH amidic), 3294 (NH ₂), 1700, 1666 and 1608 (carbonyl groups) 1.29 (t, 3H, $-\text{CH}_2\text{-CH}_3$, J= 6.00 Hz), 4.17 (q, 2H, $\text{CH}_2\text{-CH}_3$, J= 6.00 Hz), 3.89 (s, 2H, NH ₂), 4.76 (s, 2H, NCH_2CO), 7.30 (t, 1H, aromatic at C ₈ , J= 9.60Hz), 7.36 (d, 1H, aromatic at C ₆ , J= 6.80 Hz), 7.49 (s, 1H, NH), 7.69 (t, 1H, aromatic at C ₇ , J= 1.20 Hz), 8.25 (d, 1H, aromatic at C ₅ , J= 5.20 Hz).
	Ms	M/z 262 (M ⁺ , $\text{C}_{12}\text{H}_{14}\text{N}_4\text{O}_3$, 1.09%), 231 ($\text{C}_{12}\text{H}_{11}\text{N}_2\text{O}_3$, 42.9%), 203 ($\text{C}_{11}\text{H}_{11}\text{N}_2\text{O}_2$, 20.35), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
VI₂	^1H NMR CDCl_3 Ms	3.80 (s, 2H, NH ₂), 4.93 (s, 2H, NCH_2CO), 7.04-8.29 (m, 11H, 9 aromatic protons, 1H for NH and CDCl_3). M/z 310 (M ⁺ , $\text{C}_{16}\text{H}_{14}\text{N}_4\text{O}_3$, 0.9%), 279 ($\text{C}_{16}\text{H}_{11}\text{N}_2\text{O}_3$, 38.21%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base).
	IR Ms	3194 (NH amidic), 1736 (amidic carbonyl), 1676, 1608 (two ketonic carbonyls of quinazolinedione nucleus) M/z 350 (M ⁺ , $\text{C}_{19}\text{H}_{16}\text{N}_4\text{O}_3$, 1.34 %), 231 ($\text{C}_{12}\text{H}_{11}\text{N}_2\text{O}_3$, 57.26%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
VII₂	IR ^1H NMR DMSO-d_6	3061 (CH aliphatic), 1713, 1667, 1607 (carbonyls of quinazolinedione and CH_2CO) 1.19 (t, 3H, $\text{CH}_2\text{-CH}_3$, J= 5.60 Hz), 2.36 (s, 3H, p- CH_3), 4.02 (q, 2H, $\text{CH}_2\text{-CH}_3$, J= 5.60 Hz), 5.33 (s, 2H, $\text{N-CH}_2\text{CO}$), 7.25-8.21 (m, 9H, aromatic protons (8) and N= CH-Ph), 11.69 (s, 1H, NH)
	IR Ms	3331 (NH), 3079 (CH aliphatic), 1713, 1660, 1603 (carbonyls of quinazolinedione and amide side chain) M/z 356 (M ⁺ , $\text{C}_{17}\text{H}_{16}\text{N}_4\text{O}_3\text{S}$, 1.84%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 70.10%), 69 (base, 100%).
VII₃	IR Ms	


Table 3: Continued.

No.		IR (cm^{-1}), ^1H NMR (δ , ppm), Mass (m/z, %), J (Hz)
VII₄	IR Ms	3219 (NH), 2922 (CH aliphatic), 1703, 1666, 1906 (carbonyls of quinazolinedione and amide side chain). M/z 400 (M^+ , $\text{C}_{23}\text{H}_{20}\text{N}_4\text{O}_3$, 3.65 %), M/e 231 (, $\text{C}_{12}\text{H}_{11}\text{N}_2\text{O}_3$, 46.08 %), M/e 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base).
VIII₁	^1H NMR DMSO-d ₆	1.18 (t, 3H, $\text{CH}_2\text{-CH}_3$, J = 13.28Hz), 2.28 (s, 3H, CH_3 at 3-position of pyrazole group), 2.51 (s, 3H, CH_3 at 5-position of pyrazole group), 4.02 (q, 2H, CH_2CH_3 , J = 7.02 Hz), 5.69 (s, 2H, NCH_2CO), 6.31 (s, 1H, CH at C_4 of pyrazole ring).
VIII₂	IR Ms	3061 (CH alphaatic). 1713, 1667, 1607 (carbonyls of quinazolinedione and CH_2CO). M/z 374 (M^+ , $\text{C}_{21}\text{H}_{18}\text{N}_4\text{O}_3$, 0.9%), 278 (M^{-1} , $\text{C}_{16}\text{H}_{11}\text{N}_2\text{O}_3$, 100 base), M/e, 132 ($\text{C}_8\text{H}_6\text{NO}$, 43.1% base).
IX	IR Ms	3253 (NH), 2973 (CH aliphatic), 1691, 1651, 1616 (carbonyls of quinazolinedione and isatine group) M/z 391 (M^+ , $\text{C}_{20}\text{H}_{17}\text{N}_5\text{O}_4$, 0.7%), 231 ($\text{C}_{12}\text{H}_{11}\text{N}_2\text{O}_3$, 95.5%) 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
X	IR Ms	3307 (NH), 1705 (CONH), 1668, 1608, 1586 (carbonyls of quinazoline-dione and diphenimide groups) M/z 442 (M^+ , $\text{C}_{24}\text{H}_{18}\text{N}_4\text{O}_5$, 1.6%), 231 ($\text{C}_{12}\text{H}_{11}\text{N}_2\text{O}_3$, 97.1%), 132 ($\text{C}_8\text{H}_6\text{NO}$, 100% base)
XI₁	IR NMR DMSO-d ₆	3202 (NH), 3058 (CH aliphatic), 1708, 1671, 1608 (carbonyls of quinazolinedione and amide moiety). 1.18 (t, 3H, $\text{N-CH}_2\text{-CH}_3$, J = 1.46 Hz), 1.85 (s, 3H, COCH_3), 4.01 (q, 2H, $\text{N-CH}_2\text{CH}_3$, J = 5.42 Hz), 4.85 (s, 2H, $\text{N-CH}_2\text{CO}$), 7.21-8.10 (m, 4H, aromatic protons), 9.89 (s, 1H, CONH), 10.20 (s, 1H, NHCO)
XI₂	IR NMR DMSO-d ₆	3207 (NH), 3059 (CH aliphatic), 1711, 1667, 1612 (carbonyl of quinazoline-dione and amide moiety) 1.76 (s, 3H, NHCOCH_3), 4.87 (s, 2H, $\text{N-CH}_2\text{CO}$), 7.30-8.12 (m, 9H, aromatic protons), 9.88 (s, 1H, CONH), 10.19 (s, 1H, NHCOCH_3).

period was considered protected against pentylenetetrazole-induced convulsion. The number of protected animals in each group was recorded. The percent of protection as well as the medium effective dose (ED_{50}) and the relative potency of the tested compounds to the reference drug were calculated as presented in Table 4.

Conclusion

From the data recorded in Table (4), it was shown that most of the tested compounds exhibited low effect as anticonvulsant compared with phenobarbitone as shown in Fig. (1). The lower effect is due to the change of the position of ester moiety from 3-position into the 1-position of 2,4(1H,3H) quinazolinedione when comparing with compounds containing ester moiety at 3-position.^{3,13-15}

Fig. 1: Anticonvulsant activity of tested compounds against Phenobarbital as standard drug on mice

- Data were represented as mean \pm standard deviation ($M \pm SD$).
- Statistical analysis were carried out using instat 2 soft ware program, one way analysis of variance (ANOVA) test was used as statistical test followed by Tukey-Kramer as post ANOVA test for comparison between groups.
- a: indicates significant different from Phenobarbiton sodium at $p < 0.001$.

Table 4: Anticonvulsant effect of some of the synthesized compounds and phenobarbitone sodium as reference compound.

Comp. No	Dose mg/kg	No. of mice Injected	No. of mice protected	Protection %	ED ₅₀ Mg/kg mmol/L	Relative potency X±SD
III₁	50	6	2	33.3	66.7 (0.254)	0.01 ± 0.01 ^a
	100	6	5	83.3		
	150	6	6	100		
III₂	50	6	3	50	44.5 (0.161)	0.155 ± 0.05 ^a
	100	6	5	83.3		
	150	6	6	100		
III₃	50	6	1	16.6	86.7 (0.298)	0.08 ± 0.02 ^a
	100	6	4	66.6		
	150	6	6	100		
III₅	50	6	1	16.6	86.7 (0.284)	0.088 ± 0.017 ^a
	100	6	4	83.3		
	150	6	6	100		
III₆	50	6	2	33.3	63.9 (0.205)	0.124 ± .003 ^a
	75	6	4	66.6		
	125	6	6	100		
III₇	50	6	2	33.3	63.9 (0.198)	0.126 ± 0.028 ^a
	75	6	4	66.6		
	125	6	6	100		
III₈	50	6	2	33.3	55.9 (0.145)	0.172 ± 0.06 ^a
	75	6	5	83.3		
	125	6	6	100		
III₁₀	50	6	1	16.6	72.77 (0.206)	0.121 ± 0.04 ^a
	75	6	4	66.6		
	125	6	6	100		
IV	100	6	2	33.3	125.3 (0.37)	0.067 ± 0.02 ^a
	150	6	4	66.6		
	200	6	6	100		
V₁	200	6	1	16.6	273.5 (0.736)	0.033 ± 0.01 ^a
	300	6	4	66.6		
	400	6	6	100		
VII₁	200	6	1	16.6	273.5 (0.731)	0.034 ± 0.01 ^a
	300	6	4	66.6		
	400	6	6	100		
VIII₁	200	6	2	33.3	233.43 (0.666)	0.037 ± 0.01 ^a
	300	6	5	83.3		
	400	6	6	100		
X	200	6	1	16.6	273.5 (0.618)	0.04 ± 0.009 ^a
	300	6	4	66.6		
	400	6	6	100		
Phenob.	3.25	6	2	33.33	6.25 (0.025)	1 ± 0.15
	6.25	6	3	50		
	12.50	6	6	150		

$$\text{Relative potency} = \frac{\text{ED}50 \text{ of S.}}{\text{ED}50 \text{ of T.}}$$

a: Indicate significant deferent from Phenobarbiton sodium at p < 0.001.

Acknowledgement

Very thanks to Dr. Mohamed F. Abd Ellah lecturer at Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. for his valuable help in the pharmacological testing of the synthesized compounds in this work.

REFERENCES

- 1- M. A. Aziza, F. M. Salama, M. A. Amin and A.G.A. El-Helby, *Az. J. Pharm. Sci*, 9, 63-74 (1992).
- 2- S. E. S. Barakat, M. A. El-Zahabi and M. F. Radowan, *Az. J. Pharm. Sci*, 23, 36-45 (1999).
- 3- A. A. El-Helby, S. E. S. Barakat and S. G. Abdel Hamide, *Az. J. Pharm. Sci.*, 23, 25-34(1999).
- 4- M. El-Sadek, M. M. Baraka, S. M. Mostafa and M. Kh. Soltan, *Egypt. J. Pharm. Sci.*, 44 (1), 87-99 (2003).
- 5- M. Y. Ebeid, M. A. S. Amin, El-Sayed S. Barakat, M. K. Ibrahim, A. G. A. El-Helby and H. M. Saker, *Saudi Pharm. J.*, 6 (2) (1998).
- 6- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, *Pakistan J. Biol. Sci.*, 7 (7), 1268 (2004).
- 7- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, *J. Biol. Sci.*, 4 (4), 504-509 (2004).
- 8- M. A. Al-Omar, S. G. Abdel-Hamide, H. A. Al-Khamees and H. I. El-Subbagh , *Saudi Pharm. J.*, 12 (2), 63-71 (2004).
- 9- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamide, *J. Appl. Sci.*, 4 (2), 302-307 (2004).
- 10- T. W. Butler, A. F. J. Fliri, R. J. Gallaschun, B. P. Jones and J. A. Ragan, *Eur. Pat., Appl. Epl*, 083, 178 (Cl. Co7D 498104). 14 Mar 2001, Us. Appl. Pv, 151, 725, 31, 1999 (Eng) Through C. A. Vol. 134, 222727s (2001).
- 11- J. Heinicke, U. Klausmeier, C. Arkona and S. leistner, *Ger.*; DE 10,101, 324. (Cl. Co7D239/96) 13 Dec. 2001 Appl. 10, 101, 324, 13 Jan., 2001, 8 pp (Ger). Through C. A. 138, 20086n (2002).
- 12- H. Kakuta, A. Tanatani, K. Nagasawa and Y. Hashimoto, *Chem. Pharm. Bull.*, 51 (11), 1273-1282 (2003).
- 13- A. R E. N. Ossman, A. G. N. Osman and A. G. A. El-Helby, *Bull. Pharm. Sci.*, Assiut Univ., 9 (1) 105 (1986).
- 14- A. G. A. El-Helby, *Bull. Pharm. Sci.*, Assiut Univ., 118 (2), 69-78 (1995).
- 15- A. G. A. El-Helby, *Egypt J. Pharm. Sci.*, 36 (1-6), 287-296 (1995).
- 16- E. P. Papadopoulos and C. D. Torres, *J. Heterocyclic Chem.*, 19, 269 (1982).
- 17- N. P. Peet and S. Sunder, *J. Org. Chem.*, 40, 13, 1909-1914 (1975).
- 18- E. Soaje-Echaque and R. K. S. Lim, *J. Pharmacol. Exp. Ther.*, 138, 224 (1962).
- 19- R. A. Turner, "Screening Methods in Pharmacology", Academic Press, INC London LTD, London, New York, 1955, pp.(a) 69 (b)164.