Synthesis, spectral analysis and antibacterial activity of some novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4oxadiazole derivatives

Aziz-ur-Rehman ${ }^{1, *}$, Asia Siddiqa ${ }^{1}$, Muhammad Athar Abbasi ${ }^{1}$, Sabahat Zahra Siddiqui ${ }^{1}$, Samreen Gul Khan ${ }^{2}$, Shahid Rasool ${ }^{1}$ and Syed Adnan Ali Shah ${ }^{3,4}$
${ }^{1}$ Department of Chemistry, Government College University, Lahore, Pakistan
${ }^{2}$ Department of Chemistry, Government College University, Faisalabad, Pakistan
${ }^{3}$ Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
${ }^{4}$ Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia

Abstract

A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-1, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6 d , demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.

Keywords:1,3,4-Oxadiazoles, antibacterial activity, carboxylic acids,spectral analysis.

INTRODUCTION

Oxadiazoles have been known to possess pharmacological activities with medicinal and agricultural importance (Dabholkar and Bhusari, 2011 and Rashid et al., 2012). Among these molecules, 1,3,4-Oxadiazoles have exhibited radical activities including antibacterial, antienzymatic etc (Dabholkar and Bhusari, 2011; Rashid et al., 2012 and Sahin et al., 2002). All the substituted 1,3,4Oxadiazoles have been synthesized and evaluated for their biological activities (Hui et al., 2002; Mohan et al., 2004 and Omer et al., 1996). 3,4-Methylenedioxyphenyl moiety, attached to 1,3,4-Oxadiazole nucleus through S linkage in the synthesized molecules, have been found to be the part of many antitumor, anticancer and antidepressant drugs such as lycoricidine, narciclasine, pancratistatin (Ingrassia et al., 2008) and paroxetine (BarOz et al., 2007).

1,3,4-Oxadiazoles have been known to possess a broad spectrum of biological activities which prompted us to synthesize derivatives of this class. In continuation of our last projects on synthesis of S-substituted derivatives of 1,3,4-Oxadiazole (Aziz-ur-Rehman et al., 2013a; Aziz-urRehman et al., 2016 and Khalid et al., 2016), a series of 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl) thio)-1,3,4-Oxadiazole derivatives have been synthesized and evaluated for their antibacterial activity. The

[^0]molecules demonstrated weak to moderate activity against all the bacterial strains.

MATERIALS AND METHODS

The precursors, carboxylic acids, and other reagents of analytical grade were purchased from Alfa Aesar, Merck and Sigma-Aldrich. Griffin-George apparatus was used to visualize melting points with open capillary tubes and all were uncorrected. Thin layer chromatography (TLC) was a source to observe the purity of synthesized molecules and was performed on silica gel G-25-UV V_{254} coated plates with EtOAc and n-hexane as solvent systems. Jasco-320A spectrophotometer recorded infrared spectra, with wave number in cm^{-1} on abscissa and absorbance on ordinate, by KBr pellet method. Bruker spectrometers recorded ${ }^{1} \mathrm{H}-$ NMR operating at varying frequency of $300,400 \& 500$ MHz and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ at 100 MHz in $\mathrm{CHCl}_{3}-d_{l}$. The $d-$ values are given in ppm comparable to TMS, the internal reference, and J-values in Hz. JMS-HX-110 spectrometer recorded EIMS with mass number of fragment on abscissa and \%age abundance on ordinate.

General procedure for the synthesis of ethyl esters (2a-l)
The esterification of substituted organic acids (1a-1; 2.0g) in $8.0 \mathrm{~mL} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was catalyzed by 1.0 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ under reflux for 2-5 hours in a reaction flask. Reaction completion was checked out by TLC. Because of reversibility of reaction, the reaction mixture with maximal completion was transferred to a 250 mL

5-Substituted-2-((6-bromo-3,4-methyl enedioxybenzyl)thio)
-1,3,4-Oxadiazole

6a-1

5-Substituted-1, 3,4-Oxadiazol-2-thiol 4a-1

Scheme 1: Synthesis of 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole. Reagents and conditions: (I) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}^{+}$, refluxing for 2-5 hours (II) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, stirring or refluxing for 3-6 hours (III) $\mathrm{CS}_{2} / \mathrm{KOH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, refluxing for 4-6 hours (IV) 6-Bromo-3,4-methylenedioxybenzyl chloride/LiH/DMF, stirring for 3-5 hours

Table 1: Different 5-substituted aryl/aralkyl groups
Comp.

Fig. 1: Mass fragmentation pattern of 5-phenyl-2-((6-bromo-3,4-methylenedioxybenzylthio)-1,3,4-Oxadiazole(6a)
separating funnel followed by 68 mL distilled water and 24 mL diethyl ether. The mixture was basified by concentrated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution till constant pH 810. The title compounds were extracted from mixture by ether which was separated from products by distillation.

General procedure for the synthesis of carbohydrazides (3a-l)

Various ethyl esters ($2 \mathrm{a}-\mathrm{l} ; 0.06 \mathrm{~mol}$) were converted to corresponding carbohydrazides in 50.0 mL ethanol, after continuous stirring with $12.0 \mathrm{~mL} 80 \% \mathrm{~N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in a 100 mL RB flask for 3-6 hours. In some cases, the reaction mixture was set to reflux also. The completion was observed by TLC. Two third of solvent was evaporated and excess of distilled water was added for precipitation
on shaking. The precipitates were filtered, washed with distilled water or n-hexane and finally dried.

General procedure for the synthesis of 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l)

The compounds, $3 \mathrm{a}-1(0.05 \mathrm{~mol})$ were taken in a 100 mL RB flask, dissolved in 35.0 mL ethanol and then basified by solid KOH $(0.05 \mathrm{~mol})$. The mixture was refluxed till complete dissolution of solid KOH and cooled to $27^{\circ} \mathrm{C}$, room temperature. Then carbon disulfide $(0.10 \mathrm{~mol})$ was poured to the flask and refluxed again for 4-6 hours. TLC was employed to verify the reaction completion. The mixture was diluted by excess of distilled water and a $\mathrm{pH}=4-5$ was set by $4-6 \mathrm{~mL}$ dilute HCl . The system was kept undisturbed at room temperature for 10-15 minutes
and then precipitates were acquired via filtration followed by washing and drying.

General procedure for the preparation of 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4Oxadiazole (6a-l)
The synthesized compounds, 4a-1 (0.004 mol) were taken in a 50 mL RB flask and dissolved in 12.0 mL DMF on shaking. The molecules were activated by LiH (0.004 mol) after stirring for 35 minutes. Then 6-bromo-3,4methylenedioxybenzyl chloride ($5 ; 0.004 \mathrm{~mol}$) was added and the stirring was continued for 3-5 hours, monitored by TLC. Excess cold distilled water was added and the products were acquired by filtration or solvent extraction.

Characterization of the synthesized compounds

5-Phenyl-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6a)
White amorphous solid; Yield: 97\%; M.P: $153^{\circ} \mathrm{C}$; Molecular formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$; Molecular mass: 390; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3059$ (Ar-H str.), 1541 (Ar $\mathrm{C}=\mathrm{C}$ str.), 1133 (C-O str.), 675 (C-Br str.), 613 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 7.98$ (dd, $J=7.5,1.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \& 6^{\prime \prime}$), 7.49-7.45 (m, 3H, H-3" to $5^{\prime \prime}$), 7.13 (s, 1H, H-2'), 7.01 (s, 1H, H-5'), 5.94 (s, 2H, H-7'), 4.54 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 165.2$ (C-5), 164.7 (C-2), 150.8 (C-4'), 148.6 (C-3'), 134.1 (C-3' \& 5"), 133.2 (C-2" \& 6"), 132.7 (C-4"), 131.2 (C-1"), 129.6 (C-1'), 116.4 (C-6'), 114.3 (C-5'), 110.8 (C-2'), 102.3 (C-7'), 32.5 (C-8'); EIMS (m / z): $392[\mathrm{M}+2]^{+}(1 \%)$, $390[\mathrm{M}]^{+}$(1\%), 311 (100\%), 244 (2\%), 213 (89%), 183 (4\%), 178 (2\%), 145 (12\%), 134 (3\%), 119 (7\%), 105 (3\%), 104 (8%), 103 (2\%), 77 (4\%), 51 (3\%).

5-(2-Methylphenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6b)

Yellow solid; Yield: 98%; M.P: $122^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$; Molecular mass: 404; IR (KBr): $v_{\text {max }}$ (cm^{-1}): 3055 (Ar-H str.), 1534 (Ar C=C str.), 1124 (C-O str.), 654 (C-Br str.), 608 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 7.80$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 7.39$ (t, $J=$ $\left.7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.31$ (d, J=7.6 Hz, 1H, H-3"), 7.28 (t, J $\left.=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 7.10$ (s, 1H, H-2'), 6.85 (s, 1H, H-5'), 5.95 (s, 2H, H-7'), 4.53 (s, 2H, H-8'), 3.78 (s, 3H, H-7"); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 164.8(\mathrm{C}-2), 164.3$ (C-5), 150.8 (C-4'), 148.2 (C-3'), 133.9 (C-2'), 130.6 (C$\left.4^{\prime \prime}\right), 129.8$ (C-1'), 128.7 (C-3"), 127.2 (C-1"), 126.5 (C-5"), 125.8 (C-6'), 116.7 (C-6'), 114.2 (C-5'), 110.7 (C-2'), 102.5 (C-7'), 32.8 (C-8'), 20.3 (C-7'); EIMS (m / z): 406 $[\mathrm{M}+2]^{+}(0.5 \%), 404[\mathrm{M}]^{+}$(0.5\%), 325 (100\%), 244 (2\%), 213 (76\%), 192 (5\%), 183 (8\%), 160 (2\%), 134 (3\%), 133 (4\%), 119 (2%), 117 (3%), 104 (9%), 91 (30\%), 65 $(10 \%), 51(2 \%)$.

5-(3-Chlorophenyl)-2-((6-bromo-3,4-

methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6c)
Golden solid; Yield: 98%; M.P: $130{ }^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{BrClN}_{2} \mathrm{O}_{3} \mathrm{~S}$; Mol mass: 424; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right)$: 1786

3067 (Ar-H str.), 1543 (Ar C=C str.), 1131 (C-O str.), 702 (C-Cl str.), 665 (C-Br str.), 616 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 7.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.88(\mathrm{~d}, J$ $\left.=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.48\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 7.41(\mathrm{t}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 7.08$ (s, 1H, H-2'), 6.84 (s, 1H, H$\left.5^{\prime}\right), 5.95$ (s, 2H, H-7'), 4.53 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 165.6$ (C-5), 164.2 (C-2), 150.4 (C-4'), 148.7 (C-3'), 133.8 (C-3'), 130.9 (C-2'), 130.3 (C-1'), 129.7 (C-1'), 128.8 (C-4'), 127.5 (C-6'), 126.8 (C-5'), 116.4 (C-6'), 114.8 (C-5'), 110.3 (C-2'), 102.6 (C-7'), 32.3 (C-8'); EIMS (m / z): 428 [M+4] ${ }^{+}(1 \%)$, $426[\mathrm{M}+2]^{+}(1.3 \%), 424[\mathrm{M}]^{+}(1 \%), 389$ (3\%), 345 (100\%), 244 (2\%), 214 (86%), 213 (23%), 212 (13%), 183 (4\%), 179 (19\%), 153 (4\%), 139 (3\%), 137 (3\%), 134 (3\%), 111 (7\%), 104 (9%), 85 (12%), 51 (2%).

5-(4-Hydroxyphenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6d)

Creamy white amorphous solid; Yield: 98%; M.P: $203{ }^{\circ} \mathrm{C}$; Molecular formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$; Molecular mass: 406; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3069$ (Ar-H str.), 1544 (Ar $\mathrm{C}=\mathrm{C}$ str.), 1133 (C-O str.), 662 (C-Br str.), 613 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \& 6^{\prime \prime}\right), 6.92$ (d, J=8.8 Hz, 2H, H-3" \& 5"), 7.12 (s, 1H, H-2'), 7.00 (s, 1H, H-5'), 5.94 (s, 2H, H-7'), 4.54 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 165.7$ (C-5), 164.2 (C-2), 162.6 (C-4"), 150.1 (C-4'), 148.5 (C$\left.3^{\prime}\right), 129.8$ (C-1'), 123.3 (C-1"), 122.6 (C-2" \& 6'), 119.2 (C-3" \& 5"'), 116.5 (C-6'), 114.8 (C-5'), 110.4 (C-2'), 102.1 (C-7'), 32.7 (C-8'); EIMS (m / z): 408 [M+2] ${ }^{+}(0.5 \%), 406$ [M] ${ }^{+}$(0.5%), 327 (100\%), 244 (2%), 213 (78%), 193 (5\%), 183 (4\%), 161 (2\%), 135 (4\%), 134 (20\%), 121 (6\%), 119 (4%), 104 (7\%), 93 (15%), 67 (9%), 51 (4%).

5-(4-Methoxyphenyl-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6e)

White amorphous solid; Yield: 95\%; M.P: $153{ }^{\circ} \mathrm{C}$; Molecular formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$; Molecular mass: 420; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3071$ (Ar-H str.), 1547 (Ar $\mathrm{C}=\mathrm{C}$ str.), 1138 (C-O str.), 667 (C-Br str.), 616 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \& 6^{\prime \prime}\right), 7.12$ (s, 1H, H-5'), 7.00 (s, 1H, H-2'), 6.98 (d, J=8.7 Hz, 2H, H-3" \& 5"), 5.94 (s, 2H, H-7'), 4.52 (s, $2 \mathrm{H}, \mathrm{H}-8$ '), 3.85 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 165.1$ (C-5), 164.6 (C-2), 162.2 (C-4"), 150.7 (C-4'), 148.3 (C-3'), 129.8 (C-1'), 124.6 (C-1'), 117.1 (C-2" \& 6"), 116.4 (C-3" \& 5"), 115.8 (C-6'), 114.4 (C-5'), 110.7 (C-2'), 102.8 (C-7'), 32.3 (C-8'), 54.6 (C-7'); EIMS $(\mathrm{m} / \mathrm{z}): 422[\mathrm{M}+2]^{+}(1 \%), 420[\mathrm{M}]^{+}(1 \%), 341$ (100\%), 244 (2\%), 213 (86%), 208 (16%), 183 (4\%), 175 (7\%), 149 (2\%), 135 (7\%), 134 (3\%), 133 (4\%), 107 (3\%), 104 (9%), 81 (40%), 51 (2\%).

5-(2,4-Dichlorophenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole($6 f$)

Grey solid; Yield: 91%; M.P: $160^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$; Molecular mass: 458; IR (KBr): $v_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right): 3064$ (Ar-H str.), 1545 (Ar C=C str.), 1139 (C-O

Table 2:\%age inhibition of antibacterial activity

Compound	\%age inhibition				
	S. typhi $(-)$	E. coli $(-)$	P. aeroginosa $(-)$	B. subtilis $(+)$	S. aureus $(+)$
6a	40.06 ± 4.76	51.63 ± 4.58	48.25 ± 0.42	39.67 ± 2.92	42.40 ± 3.40
6b	56.41 ± 4.65	70.11 ± 2.96	54.33 ± 0.67	45.58 ± 1.42	51.10 ± 2.40
6c	75.82 ± 1.00	75.47 ± 1.89	63.42 ± 1.75	52.17 ± 0.25	61.45 ± 3.85
6d	63.47 ± 1.24	76.11 ± 1.42	63.25 ± 0.58	58.63 ± 1.13	61.10 ± 2.10
6e	31.71 ± 1.94	54.11 ± 2.32	53.00 ± 0.42	24.96 ± 1.96	43.85 ± 3.35
6f	48.88 ± 1.82	57.58 ± 0.95	58.25 ± 2.67	51.88 ± 4.29	54.80 ± 0.90
6g	34.12 ± 2.24	54.32 ± 4.00	46.42 ± 0.33	38.63 ± 1.54	43.75 ± 3.65
6h	64.29 ± 5.00	73.47 ± 1.58	58.46 ± 2.46	54.17 ± 2.58	58.70 ± 0.70
6 i	35.18 ± 2.65	62.35 ± 3.45	53.34 ± 1.12	52.13 ± 0.87	52.89 ± 2.09
6j	58.41 ± 0.76	62.84 ± 0.84	65.88 ± 1.79	42.46 ± 5.00	51.75 ± 2.55
6k	61.82 ± 1.00	69.37 ± 2.21	57.29 ± 3.38	51.25 ± 1.25	55.85 ± 5.00
6l	24.35 ± 2.59	62.26 ± 4.37	55.46 ± 4.54	39.29 ± 5.00	35.90 ± 3.60
Ciprofloxacin	91.19 ± 2.10	90.44 ± 1.23	92.00 ± 2.76	89.98 ± 2.07	92.21 ± 1.59

Table 3:MIC values of antibacterial activity

Compound	MIC $(\mu \mathrm{M})$				
	S. typhi $(-)$	E. coli $(-)$	P. aeroginosa $(-)$	B. subtilis $(+)$	S. aureus $(+)$
6a	-	18.78 ± 3.43	-	-	-
6b	18.50 ± 1.56	14.62 ± 1.95	18.27 ± 1.83	-	16.29 ± 4.27
6c	14.26 ± 2.00	11.35 ± 1.13	14.48 ± 1.53	18.65 ± 1.32	12.58 ± 2.40
6d	12.10 ± 1.43	10.98 ± 1.85	12.56 ± 2.25	14.39 ± 2.12	12.88 ± 2.40
6e	-	18.00 ± 3.35	18.72 ± 1.67	-	-
6f	-	17.18 ± 2.65	17.25 ± 2.25	19.15 ± 3.50	14.00 ± 2.13
6g	-	18.17 ± 1.35	-	-	-
6h	15.20 ± 2.47	11.69 ± 2.70	15.02 ± 4.71	14.37 ± 3.16	12.80 ± 4.47
6 i	-	14.67 ± 1.99	18.56 ± 0.97	17.39 ± 2.19	19.04 ± 1.85
6j	15.89 ± 1.69	12.40 ± 1.50	12.63 ± 2.13	-	15.13 ± 1.79
6k	11.70 ± 1.76	14.36 ± 2.55	15.33 ± 2.21	17.27 ± 1.54	16.49 ± 1.73
6l	-	16.42 ± 2.15	18.36 ± 3.96	-	-
Ciprofloxacin	9.42 ± 1.09	8.02 ± 2.17	8.11 ± 1.32	8.88 ± 2.00	9.23 ± 1.87

Note: Minimum inhibitory concentration (MIC) was measured with suitable dilutions ($5-30 \mu \mathrm{~g} / \mathrm{well}$) and results were calculated using EZ-Fit Perrella Scientific Inc. Amherst USA software.
str.), 705 (C-Cl str.), 668 (C-Br str.), 613 (C-S str.); ${ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-6"), 7.56 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3{ }^{\prime \prime}$), 7.35 (dd, $J=8.8,1.6$ Hz, 1H,H-5'), 7.10 (s, 1H, H-2'), 6.85 (s, 1H, H-5'), 5.95 (s, 2H, H-7'), 4.53 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 168.2$ (C-5), 164.7 (C-2), 150.3 (C-4'), 148.6 (C-3'), 137.2 (C-4'), 133.6 (C-2'), 132.9 (C-6'), 131.2 (C-3'), 129.6 (C-1'), 128.3 (C-5"), 127.1 (C-1'), 116.4 (C-6'), 114.5 (C-5'), 110.2 (C-2'), 102.7 (C-7'), 32.5 (C-8'); $\operatorname{EIMS}(\mathrm{m} / \mathrm{z}): 464[\mathrm{M}+6]^{+}(1 \%), 462[\mathrm{M}+4]^{+}$ (1.6\%), $460[\mathrm{M}+2]^{+}(1.3 \%), 458[\mathrm{M}]^{+}(1 \%), 380$ (100\%), 246 (3\%), 244 (2\%), 213 (84%), 187 (4\%), 183 (4\%), 173 (3\%), 171 (6%), 145 (5\%), 134 (3\%), 119 (4\%), 105 (9\%), 85 (10\%).

5-(3,5-Dinitrophenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6g)

Bright yellow solid; Yield: 98\%; M.P: $190^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{7} \mathrm{~S}$; Molecular mass: 480; IR (KBr):
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3063$ (Ar-H str.), 1542 (Ar C=C str.), 1126 (CO str.), 661 (C-Br str.), 617 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4 "), 8.27$ (s, 2 H , H-2" \& 6"), 7.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 6.84 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.96$ (s , $\left.2 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 4.62$ (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, $\delta / \mathrm{ppm}): 171.3$ (C-5), 164.7 (C-5), 150.9 (C-4'), 149.2 (C$\left.3^{\prime \prime} \& \mathrm{C}-5^{\prime \prime}\right), 147.2$ (C-3'), 135.3 (C-1"), 129.7 (C-1'), 127.3 (C-3" \& C-6"), 117.4 (C-4"), 116.8 (C-6'), 114.1 (C-5'), 110.5 (C-2'), 102.9 (C-7'), 32.6 (C-8'); EIMS (m / z): 482 $[\mathrm{M}+2]^{+}(1 \%), 480[\mathrm{M}]^{+}(1 \%), 401(40 \%), 268(11 \%), 244$ (2\%), 235 (19\%), 213 (100\%), 209 (12%), 195 (10%), 193 (15\%), 183 (8\%), 167 (5\%), 137 (4\%), 134 (3\%), 107 (6\%), 104 (5\%).

5-(2-Methyl-3,5-dinitrophenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6h)

Creamy white amorphous solid; Yield: 97%; M.P: $145^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}_{7} \mathrm{~S}$; Molecular mass: 494; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3054$ (Ar-H str.), 1532 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$ str.),

1124 (C-O str.), 651 (C-Br str.), 607 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}$): 7.28 (d, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right)$, 7.14 (d, J=2.8 Hz, 1H, H-6"), 7.10 (s, 1H, H-2'), 6.84 (s, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.96$ (s, 2H, H-7'), 4.53 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 170.3$ (C-5), 164.7 (C-2), 150.8 (C-4'), 149.5 (C-3'), 148.1 (C-3'), 147.6 (C-5'), 136.3 (C-1'), 129.7 (C-1'), 125.8 (C-6"), 124.9 (C-2'), 118.5 (C-4'), 116.8 (C-6'), 114.4 (C-5'), 110.1 (C-2'), 102.6 (C-7'), 32.9 (C-8'), 19.2 (C-7''); EIMS (m / z): 496 [M+2] ${ }^{+}$(1\%), $494[\mathrm{M}]^{+}(1 \%), 415$ (35\%), 282 (6\%), 249 (8\%), 244 (2%), 223 (9%), 213 (100%), 209 (15%), 207 (8\%), 183 (4\%), 181 (4\%), 134 (3\%), 104 (9\%).

5-(2-Chloro-3,5-dinitrophenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6i)
White amorphous solid; Yield: 93%; M.P: $184^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{BrClN}_{4} \mathrm{O}_{7} \mathrm{~S}$; Molecular mass: 514; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3069$ (Ar-H str.), 1551 (Ar C=C str.), 1137 (C-O str.), 701 (C-Cl str.), 669 (C-Br str.), 617 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 8.34$ (s, $1 \mathrm{H}, \mathrm{H}-$ 4"), 8.16 (s, 1H, H-6"), 7.13 (s, 1H, H-2'), 6.85 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ $\left.5^{\prime}\right), 5.95$ (s, 2H, H-7'), 4.54 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 171.7$ (C-5), 164.3 (C-2), 152.1 (C-3'), 150.6 (C-4'), 149.0 (C-5'), 148.3 (C-3'), 137.1 (C-1"), 132.7 (C-2"), 129.5 (C-1'), 125.9 (C-6"), 124.2 (C-4'), 116.8 (C-6'), 114.4 (C-5'), 110.5 (C-2'), 102.2 (C-7'), $32.6\left(\mathrm{C}-8^{\prime}\right)$; EIMS $(\mathrm{m} / \mathrm{z}): 518[\mathrm{M}+4]^{+}(1 \%)$, $516[\mathrm{M}+2]^{+}(1.3 \%), 514[\mathrm{M}]^{+}(1 \%), 435(22 \%), 302$ (16\%), 269 (17%), 244 (2\%), 243 (9%), 229 (2%), 227 (2\%), 213 (100%), 201 (3\%), 183 (4%), 134 (5\%), 104 (9\%).

5-(3,4-Methylenedioxyphenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6j)

Grey solid; Yield: 96%; M.P: $176^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}$; Molecular mass: 434; IR (KBr): $v_{\text {max }}$ (cm^{-1}): 3067 (Ar-H str.), 1540 (Ar C=C str.), 1133 (C-O str.), 660 (C-Br str.), 610 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 7.51$ (dd, $\left.J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 7.42$ (d, $\left.J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.12$ (s, 1H, H-2'), 7.00 (s, 1H, H5^{\prime}), 6.88 (d, J=8.1 Hz, 1H, H-5'), 6.03 (s, 2H, H-7'), 5.94 (s, 2H, H-7"), 4.52 (s, 2H, H-8'); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 164.7$ (C-2), 164.4 (C-5), 152.1 (C-4"), 150.6 (C-4'), 148.9 (C-3'), 148.1 (C-3'), 129.7 (C-1'), 122.4 (C-1'), 116.5 (C-6'), 115.4 (C-6'), 114.7 (C-5'), 110.4 (C-2'), 109.1 (C-5"), 108.6 (C-2'), 102.3 (C-7'), 101.8 (C-7"), 32.5 (C-8'); EIMS (m / z): $436[\mathrm{M}+2]^{+}(1 \%)$, $434[\mathrm{M}]^{+}(1 \%), 355(100 \%), 244$ (2\%), 222 (23\%), 213 (86%), 189 (16%), 183 (4%), 163 (2\%), 149 (2%), 147 (4\%), 134 (3\%), 121 (3\%), 104 (9\%), 91 (39\%).

5-(2-(3,4-Methylenedioxyphenyl)ethenyl)-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6 k)

 Grey solid; Yield: 90%; M.P: $175^{\circ} \mathrm{C}$; Mol formula: $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}$; Molecular mass: 460; IR (KBr): $v_{\text {max }}$ (cm^{-1}): 3067 (Ar-H str.), 1545 (Ar C=C str.), 1134 (C-O str.), 663 (C-Br str.), 611 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$$\mathrm{MHz}, \delta / \mathrm{ppm}): 7.35$ (d, $\left.J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime \prime}\right), 7.06$ (s, 1 H , H-2'), 7.02 (d, $\left.J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}\right), 6.98$ (dd, $J=8.0,1.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{C}^{\prime}\right), 6.84$ (s, 1H, H-5'), 6.81 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-5"), 6.79 (d, J=16.4 Hz, 1H, H-8"), 5.99 (s, 2H, H-7"), 5.94 (s, 2H, H-7'), 4.50 ($\left.\mathrm{s}, 2 \mathrm{H}, \quad \mathrm{H}-8^{\prime}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta / \mathrm{ppm}\right): 164.7$ (C-5), 164.2 (C-2), 150.6 (C-4'), 149.4 (C-4'), 148.9 (C-3'), 148.3 (C-3'), 142.7 (C-8"), 130.9 (C-1"), 129.6 (C-1'), 122.3 (C-9"), 120.1 (C-6'), 116.6 (C-6'), 114.3 (C-5'), 110.8 (C-2'), 108.2 (C-5"), 107.5 (C-2"), 102.8 (C-7'), 101.2 (C-7"), 32.7 (C-8'); EIMS (m / z): $462[\mathrm{M}+2]^{+}(1 \%), 460[\mathrm{M}]^{+}$ (1\%), 381 (100\%), 244 (7\%), 215 (7\%), 213 (95\%), 189 (10\%), 183 (4\%), 175 (3\%), 173 (2\%), 147 (4\%), 134 (3\%), 121 (7\%), 104 (9%), 91 (13%).

5-[1-(Phenylsulfonyl)piperidin-4-yl]-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole (6l)

White amorphous solid; Yield: 95\%; M.P: $120^{\circ} \mathrm{C}$; Molecular formula: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}$; Molecular mass: 537; IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right): 3069$ (Ar-H str.), 1545 (Ar $\mathrm{C}=\mathrm{C}$ str.), 1387 ($\mathrm{S}=\mathrm{O}$ str.), 1137 (C-O str.), 668 (C-Br str.), 616 (C-S str.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \delta / \mathrm{ppm}\right)$: 7.75 (d, J=7.0 Hz, 2H, H-2'" \& 6''), 7.60 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-3'" \& 5"'), 7.59 (t, J=7.5 Hz, 1H, H-4'"), 7.04 (s, 1H, H2'), 6.98 (s, 1H, H-5'), 5.94 (s, 2H, H-7'), 4.43 (s, 2H, H$\left.8^{\prime}\right), 3.70$ (dt, $\left.J=7.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{eq}}, \mathrm{H}^{2 \prime} \& 6^{\prime \prime}\right), 2.82(\mathrm{~m}, 1 \mathrm{H}$, H-4'), 2.57 (dt, $J=6.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{ax}}, \mathrm{H}^{\prime \prime} \mathbf{2 ' ~}^{\prime} 6^{\prime \prime}$), 2.11 (dd, $\left.J=13.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{eq}}, \mathrm{H}-3^{\prime \prime} \& 5^{\prime \prime}\right), 1.98(\mathrm{dq}, J=11.0,4.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}_{\mathrm{ax}}, \mathrm{H}-3 " \& 5 "\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, $\delta / \mathrm{ppm}): 171.3$ (C-5), 164.8 (C-2), 150.6 (C-4'), 148.3 (C3'), 144.9 (C-1"'), 134.2 (C-4'"), 129.5 (C-1'), 128.4 (C-3"' \& 5"'), 127.1 (C-2"' \& 6''), 116.5 (C-6'), 114.3 (C-5'), 110.5 (C-2'), 102.2 (C-7'), 43.7 (C-2" \& 6'), 32.3 (C-8'), 30.8 (C-4"), 28.9 (C-3" \& 5"); EIMS (m / z): 539 [M+2] ${ }^{+}$ (1\%), $537[\mathrm{M}]^{+}(1 \%), 458$ (100%), 325 (2%), 213 (4%), 292 (1%), 266 (2%), 252 (3%), 250 (2%), 224 (5%), 183 (2\%), 160 (4\%), 141 (3\%), 104 (8%), 77 (10\%), 51 (2\%).

Antibacterial activity

The reported assay was employed to evaluate antibacterial activity of all the synthesized molecules (Aziz-ur-Rehman et al., 2013b; Kaspady et al., 2009 and Yang et al., 2006).

STATISTICAL ANALYSIS

Microsoft Excel 2010 was used for Statistical analysis for all the measurements and the results are tabulated as mean \pm sem.

RESULTS

Protocol for the synthesis of 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives, $6 \mathrm{a}-1$, is outlined in scheme-1 and different 5stubstituted alky/aryl/aralkyl are mentioned in table 1. A novel series of compounds were synthesized find out new antibacterial agents. The \% age inhibition and MIC values for antibacterial activity results are presented in table 2 Pak. J. Pharm. Sci., Vol.31, No.5, September 2018, pp.1783-1790
and table 3. Experimental section is explicating the detail adopted procedures and the characterization of synthesized compounds.

Aryl/aralkyl carboxylic acids (1a-1), the precursors, were converted to ethyl esters (2a-l), carbohydrazides (3a-l), 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-1) and finally 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazoles (6a-l) through a series of steps (scheme-1). All the structures of synthesized molecules were corroborated through spectral analysis. Compound 6a has been discussed to deduce to its molecular and structural formulae.

Antibacterial activity (in vitro)

Using ciprofloxacin as reference standard, the results of antibacterial activity for all the molecules are presented as mean \pm sem in table 2 and table 3 in the form of percentage inhibition and MIC values. Overall all the molecules executed very moderate inhibitory potential.

DISCUSSION

Compound 6a was obtained as white amorphous solid with melting point of $153^{\circ} \mathrm{C}$. Its molecular formula was deduced as $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$ via EIMS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The IR spectrum showed the characteristics stretching absorption bands at 3059 (Ar-H), 1541 (Ar $\mathrm{C}=\mathrm{C}$), 1133 (C-O), 675 (C-Br) and 613 (C-S). Oxadiazole moiety in all the synthesized molecules was confirmed through stretching bands at $1610-1650 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{N}$ bond and at 1030-1060 cm^{-1} for C-O bond. The EIMS showed $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 390$ and $[\mathrm{M}+2]^{+}$at m / z 392. The characteristics fragments appeared at $m / z 178$ for 5-phenyl-1,3,4-Oxadiazol-2-thiol cation and at $\mathrm{m} / \mathrm{z} 213$ for the 6-bromo-3,4-methylenedioxybenzyl group. The noticeable fragments for 6 a are given in its mass fragmentation pattern in fig. 1. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum confirmed phenyl group attached to $5^{\text {th }}$ position of 1,3,4Oxadiazole by two signals resonating at $\delta 7.98$ (dd, $J=$ $\left.7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \& 6^{\prime \prime}\right) \& 7.49-7.45$ (m, 3H, H-3" to 5") and also 6-bromo-3,4-methylenedioxybenzyl group by four signals at $\delta 7.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 5.94 (s, 2H, H-7') and 4.54 (s, 2H, H-8'). Fourteen signals were shown by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (BB and DEPT) spectrum for seven quaternary, seven methine and two methylene carbons. 5-Phenyl-1,3,4-Oxadiazol-2-thiol was allotted the signals at $\delta 165.2$ (C-5), 164.7 (C-2), 134.1 (C-3" \& 5'), 133.2 (C-2" \& 6"), 132.7 (C-4") \& 131.2 (C-1") and the signals at $\delta 150.8$ (C-4'), 148.6 (C-3'), 129.6 (C-1'), 116.4 (C-6'), 114.3 (C-5'), 110.8 (C-2'), 102.3 (C-7') and 32.5 (C-8') represented 6-bromo-3,4-methylene dioxybenzyl group. The molecule 6a was named, 5-phenyl-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3, 4-Oxadiazole. Likewise the structures of other synthesized compounds were corroborated.

The molecules, $6 \mathrm{c}, 6 \mathrm{~d}$, 6 h and 6 k remained much efficient against all the bacterial strains but 6 d was the best among all the synthesized molecules. The MIC values shown by this molecule were as, 12.10 ± 1.43 relative to 9.42 ± 1.09 for S. typhi, 10.98 ± 1.85 relative to 8.02 ± 2.17 for E. coli, 12.56 ± 2.25 relative to 8.11 ± 1.32 for P. aeroginosa, 14.39 ± 2.12 relative to 8.88 ± 2.00 for B. subtilis and 12.88 ± 2.40 relative to 9.23 ± 1.87 for S. aureus. Against S. typhi, half of the synthesized molecules remained inactive and 6 k was the best inhibitor with MIC of $11.70 \pm 1.76 \mu \mathrm{M}$ relative to $9.42 \pm 1.09 \mu \mathrm{M}$. E. coli was inhibited by the whole series with 6 d , the best one. P. aeroginosa was also best inhibited by 6 d and not at all by $6 \mathrm{a} \& 6 \mathrm{~g}$. Against B. subtilis, 6h executed the most activity with MIC of $14.37 \pm 3.16 \mu \mathrm{M}$ relative to $8.88 \pm 2.00 \mu \mathrm{M}$. The molecule 6 c was good against S. aureus with MIC of 12.58 ± 2.40 $\mu \mathrm{M}$ relative to $9.23 \pm 1.87 \mu \mathrm{M}$ and $6 \mathrm{a}, 6 \mathrm{e}, 6 \mathrm{~g}$ and 6 l remained inactive against this bacterial str.ain.

CONCLUSION

The molecules were synthesized in a series of steps with awesome yields and found to be weak to moderate inhibitors of Gram-bacteria. The compounds, 6c, 6d, 6h and 6 k efficiently acted against all the bacterial strains and further 6 d was the best one among these four. These molecules can be evaluated for in vivo activity and so might be considerable in the drug discovery program for the ailment of various diseases.

ACKNOWLEDGEMENT

The Higher Education Commission (HEC) of Pakistan is acknowledged for support regarding research work and spectral analysis.

REFERENCES

Aziz-ur-Rehman, Fatima A, Abbas N, Abbasi MA, Khan KM, Ashraf M, Ahmad I and Ejaz SA March (2013a). Synthesis, Characterization and Biological Screening of 5-substituted-1,3,4-oxadiazole-2yl- N -(2-methoxy-5-chlorophenyl)-2-sulfanyl acetamide. Pak. J. Pharm. Sci.,26(2): 345-352.
Aziz-ur-Rehman, Fatima A, Abbas N, Abbasi MA, Rasool S, Malik A, Ashraf M, Ahmad I and Ejaz SA (2016). Synthesis of new N-(5-Chloro-2-methoxyphenyl)-4-(5-substituted-1,3,4-Oxadiazol-2-ylthio) butanamide derivatives as Suitable Lipoxygenase inhibitors. J. Saudi Chem. Soc., 20: S488-S494.
Aziz-ur-Rehman, Nafeesa K, Abbasi MA, Kashfa H, Rasool S, Ahmad I and Arshad S (2013b). Synthesis, Characterization and Biological Screening of Various S-substituted Derivatives of 5-(3-Nitrophenyl)-1,3,4-Oxadiazole-2-thiol. Pak. J. Chem., 3(2): 1-8.
Bar-Oz B, Einarson T, Einarson A, Boskovic R, O'Brien L, Malm H, Berard A and Koren G (2007). Paroxetine
and congenital malformations: Meta-Analysis and consideration of potential confounding factors. Clin. Ther.,29(5): 918-926.
Dabholkar VV and Bhusari NV (2011). Synthesis of 2-Substituted-1,3,4-Oxadiazole Derivatives. Int. J. Environ. Pharm. Res., 4(1): 1-4.
Hui XP, Chu CH and Zhang ZY (2002). Synthesis and antibacterial activities of 1,3,4 oxadiazole derivatives containing 5 -methylisoxazole moiety. Indian J. Chem.,41B: 2176-2179.
Ingrassia L, Lefranc F, Mathieu V, Darro F and Kiss R (2008). Amaryllidaceae isocarbostyril alkaloids and their derivatives as promising antitumor agents. Transl. Oncol.,1(1): 1-13.
Kaspady M, Narayanaswamy VK, Raju M and Rao GK (2009). Synthesis, antibacterial activity of 2,4disubstituted oxazoles and thiazoles as bioesters. Lett. Drug Des. Discov., 6: 21-28.
Khalid H, Aziz-ur-Rehman, Abbasi MA, Malik A, Rasool S, Nafeesa K, Ahmad I and Afzal S (2013).Synthesis, spectral analysis and anti-bacterial study of N -
substituted derivatives of 2-(5-(1-(phenylsulfonyl)piperidin-4-yl)-1,3,4-Oxadiazol-2ylthio)acetamide. J. Saudi Chem. Soc.,20: S615-S623.
Mohan TP, Vishalakshi B, Bhat KS, Kendappa GN and Rao KS (2004). Synthesis and insecticidal activity of some 1,3,4-oxadiazole derivatives containing phenoxy-fluoro-phenyl group. Indian J. Chem.,43B: 1798-1801.
Omar FA, Mahfouz NM and Rahman MA (1996). Design, synthesis and anti-inflammatory activity of some 1,3,4oxadiazole derivatives. Eur. J. Med. Chem.,31: 819825.

Rashid M, Husain A and Mishra R (2012). Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem.,54: 855-866.
Sahin G, Palaska E, Ekizoglu M and Ozalp M (2002). Synthesis and antimicrobial activity of some 1,3,4oxadiazole Derivatives. Il Farmaco.,57: 539-542.
Yang CR, Zang Y, Melissa RJ, Khan SI, Zhang YJ and Li XC (2006). Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother.,50(5): 17101714.

[^0]: *Corresponding author: e-mail: azizryk@yahoo.com

