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C21 to C19 steroids produced. This ratio is regulated 
posttranslationally by at least three factors: the abun-
dance of the electron-donating protein P450 oxidoreduc-
tase (POR), the presence of cytochrome b 5  and the serine 
phosphorylation of P450c17. Mutations of POR are a 
new, recently described disorder manifesting as the Ant-
ley-Bixler skeletal dysplasia syndrome, and a form of 
polycystic ovary syndrome. 

 Copyright © 2005 S. Karger AG, Basel 

 Steroid Hormones 

 Steroid hormones are essential for life and reproduc-
tion. There are several classes of steroid hormones, de-
fi ned according to their physiologic actions and the re-
ceptors to which they bind. Mineralocorticoids instruct 
the kidney to retain sodium. In the absence of mineralo-
corticoids, the kidney discards Na +  and retains K +  and 
H + , leading to hyponatremia, hyperkalemia, acidosis, de-
hydration and death. Thus, mineralocorticoids play a 
central role in salt and water metabolism and in regulat-
ing blood pressure  [1] . Glucocorticoids help to maintain 
euglycemia, mediate stress responses and regulate a va-
riety of immune responses. Survival is possible in the 
absence of glucocorticoids (Addison’s disease) until the 
time of severe physiologic stress (febrile illness, major 
surgery, hypovolemia)  [2] . Three distinct classes of sex 
steroids are required for sexual differentiation and repro-
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  Abstract 
 Androgens and estrogens are primarily made from de-
hydroepiandrosterone (DHEA), which is made from cho-
lesterol via four steps. First, cholesterol enters the mito-
chondria with the assistance of the steroidogenic acute 
regulatory protein (StAR). Mutations in the StAR gene 
cause congenital lipoid adrenal hyperplasia (lipoid CAH), 
a potentially lethal disease in which virtually no steroids 
are made. Lipoid CAH is common among Palestinian Ar-
abs and people from eastern Arabia, and among Korean 
and Japanese people. Second, within the mitochondria, 
cholesterol is converted to pregnenolone by the choles-
terol side chain cleavage enzyme, P450scc; disorder of 
this enzyme is very rare, probably due to embryonic le-
thality. Third, pregnenolone undergoes 17 � -hydroxyl-
ation by microsomal P450c17. 17 � -Hydroxylase defi cien-
cy, manifesting as female sexual infantilism and 
hypertension, is rare except in Brazil. Finally, 17-OH 
pregnenolone is converted to DHEA by the 17,20 lyase 
activity of P450c17. The ratio of the 17,20 lyase to 17 � -
hydroxylase activity of P450c17 determines the ratio of 
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duction:  progestins  are required for normal menstrual 
cycles and for the maintenance of pregnancy;  estrogens  
for female sexual development and reproduction; and 
 androgens  for male sexual differentiation in fetal life, 
male sexual development, and reproduction. While the 
individual can survive without sex steroids, their loss 
would eventually be lethal to the species. Thus, steroid 
hormones play a central, crucial and irreplaceable role in 
human life.  

   Mitochondria, Steroidogenic Acute Regulatory 
Protein and P450scc 

 The fi rst, rate-limiting and hormonally regulated step 
in the biosynthesis of all steroid hormones is the conver-
sion of cholesterol to pregnenolone, described in the next 
paragraph. Steroidogenic cells do not store signifi cant 
quantities of steroid hormones; hence steroid secretion is 
directly related to steroid synthesis. Steroid synthesis is 
regulated both acutely and chronically. The acute stimu-
lation of steroidogenesis, as in the rapid rise in cortisol in 
response to intravenous administration of ACTH, is me-
diated at the level of cholesterol import into mitochon-
dria, which is facilitated by the steroidogenic acute regu-
latory protein (StAR)  [3, 4] . Chronic stimulation, over a 
period of hours to weeks, such as in the hypercortisolism 
of Cushing’s disease, is mediated by increased transcrip-
tion of the genes encoding the various steroidogenic en-
zymes. Thus, the acutely regulated step is the availability 
of substrate to, and the chronically regulated step is the 
amount of, those enzymes. 

 The conversion of cholesterol to pregnenolone is ac-
complished by the cleavage of the cholesterol side chain, 
catalyzed by a mitochondrial cytochrome P450 enzyme 
termed P450scc, where scc designates side chain cleavage. 
This single enzyme, encoded by a single gene  [5, 6]  (some-
times termed CYP11A) on chromosome 15q23–q24  [7] , 
catalyzes three distinct sequential reactions on a single ac-
tive site: cholesterol sequentially undergoes 20-hydroxyl-
ation, 22-hydroxylation, and scission of the 20,22 carbon-
carbon bond to yield pregnenolone and isocaproaldehyde  
 [8] . The expression of the gene for P450scc enables a cell 
to become steroidogenic (able to make steroids). The lev-
el of P450scc gene transcription is hormonally regulated 
by multiple pathways, permitting independent regulation 
of steroidogenesis in multiple cell types  [9–11] , and the 
amount of P450scc mRNA present in a cell directly cor-
relates with its steroidogenic capacity  [12, 13] . Each of the 
three reactions catalyzed by P450scc requires a pair of 

electrons. A fl avoprotein (ferredoxin reductase) receives 
the electrons from NADPH, then passes them to an iron/
sulfur protein (ferredoxin), which in turn passes them to 
the P450. Ferredoxin reductase and ferredoxin are gener-
ic electron transfer proteins that can donate electrons to 
any of the various mitochondrial P450 enzymes  [14–17] . 
P450scc can only function within the mitochondria  [18] ; 
hence, delivery of cholesterol to the inner mitochondrial 
membrane by StAR is a crucial step in steroidogenesis. 

 Early work showed that ACTH could induce adrenal 
steroidogenesis very rapidly, and that this induction 
could be inhibited by cycloheximide or other inhibitors 
of protein synthesis  [19–22] , suggesting that a short-lived 
protein was an essential trigger of the acute response. The 
responsible protein, StAR, was fi rst identifi ed in rat ad-
renals and corpus luteum as a phosphoprotein, seen on 
2-dimensional gels that appeared rapidly when cells were 
stimulated with cAMP  [23–25] . Stocco’s laboratory then 
cloned the mouse cDNA and found that expression of 
StAR in mouse Leydig MA-10 cells increased steroido-
genesis 6-fold  [26] . StAR similarly increased steroidogen-
esis in COS-1 cells cotransfected with the P450scc system 
 [27, 28] , but the defi nitive proof that StAR is essential in 
human physiology came from fi nding StAR mutations in 
congenital lipoid adrenal hyperplasia (lipoid CAH)  [27, 
29] . 

   Congenital Lipoid Adrenal Hyperplasia  

 Lipoid CAH is a rare autosomal recessive disorder that 
severely disrupts the synthesis of all adrenal and gonadal 
steroids  [4] . A severe defect in fetal testicular biosynthesis 
is evident because affected 46,XY genetic males are born 
with wholly female external genitalia, refl ecting an ab-
sence of testosterone synthesis between 6 and 12 weeks 
of gestation. At birth, the adrenals are engorged with cho-
lesterol ester deposits. Affected newborns have low but 
measurable levels of steroid hormones. They soon die 
from glucocorticoid and mineralocorticoid defi ciency if 
hormonal replacement therapy is not initiated, but prop-
erly treated patients can survive to adulthood  [30, 31] .  

 Although StAR is needed for a rapid and maximal ste-
roidogenic response, there are also low levels of StAR-in-
dependent steroidogenesis in cells that express StAR  [27, 
32] . However, some steroidogenic cells, such as those of 
the placenta  [28] , do not express StAR. The brain also ex-
presses low levels of StAR in apparently steroidogenic 
cells that also contain P450scc  [33–35] , but the role of 
StAR in the brain is not clear, as there is no known tropic 
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stimulus to neurosteroidogenesis  [36] , and a specifi c CNS 
defect in StAR-defi cient patients with lipoid CAH has not 
been reported  [36] . The demonstration of StAR-indepen-
dent steroidogenesis led to formulation of the two-hit 
model of lipoid CAH  [32] . The fi rst hit is the mutation in 
the StAR gene, ablating StAR-dependent steroidogenesis 
but permitting StAR-independent steroidogenesis to per-
sist. StAR-independent placental steroidogenesis and pla-
cental synthesis of progesterone remain normal, permit-
ting term gestation. Low levels of adrenal StAR-indepen-
dent steroidogenesis account for the low, but detectable, 
levels of steroid hormones seen in the sera of lipoid CAH 
patients in the fi rst month of life  [31, 32] . The presence of 
these steroids appears to explain why untreated lipoid 
CAH infants may survive without treatment for several 
months  [31, 32, 37, 45] , whereas patients with other forms 
of salt-wasting CAH do not. However, these steroid hor-
mone concentrations are too low to suppress secretion of 
ACTH, gonadotropins and angiotensin II to normal lev-
els. Excess amounts of these tropic hormones stimulate 
cellular uptake of low-density lipoprotein cholesterol and 
increased production of cholesterol from acetate. This 
tropic hormone stimulation results in the accumulation of 
cholesterol esters, which eventually disrupts the cells, ei-
ther via physical engorgement of the cell with droplets of 
cholesterol esters or by a chemical action of cholesterol 
oxidation products, or both. This second hit thus destroys 
the low levels of StAR-independent steroidogenesis, lead-
ing to the unmeasurable levels of steroid in the serum of 
older children with lipoid CAH, and to the absence of cir-
culating testosterone in affected 46,XY fetuses  [4, 32] . 

 The fetal ovaries do not express the genes for the ste-
roidogenic enzymes and thus do not make steroids  [38] ; 
unlike the testes and adrenals, the ovaries only start to 

make steroid hormones at the onset of puberty. Conse-
quently, the ovaries of 46,XX females affected with li-
poid CAH do not receive the second hit until the onset 
of puberty, when LH stimulates low levels of StAR-in-
dependent steroidogenesis. With each monthly cycle, 
another follicle is recruited and stimulated by gonado-
tropins, producing spontaneous age-appropriate breast 
development in affected 46,XX individuals. However, 
gonadotropin stimulation quickly results in cholesterol 
engorgement of these cells (the second hit in lipoid CAH) 
so that the later phase of ovarian steroidogenesis, the 
secretion of large amounts of progesterone, does not oc-
cur  [39, 40] . Follicles that are not recruited remain un-
stimulated and constitute a reservoir of steroidogenic 
cells undamaged by the second hit of lipoid CAH, so that 
with each monthly cycle a new undamaged follicle is re-
cruited. Estrogen is then produced, leading to cyclic 
uterine estrogen withdrawal bleeding that resembles 
normal menses, but, as there is no progesterone, these 
cycles are anovulatory. The predictions of the two-hit 
model have recently been confi rmed by elegant experi-
ments with StAR knockout mice  [41, 42] . 

 StAR mutations causing lipoid CAH have been de-
scribed in about 70 patients from all over the world. Li-
poid CAH is most common in Japan and Korea  [27, 32, 
37, 43, 44] . The mutation Q258X accounts for about 70% 
of affected alleles in Japan and 95% of the alleles report-
ed to date from Korea. A second population in whom 
lipoid CAH appears to be common is Palestinian Arabs, 
among whom 7 cases have been reported to date. How-
ever, several different mutations are found in these pa-
tients, suggesting founder effects in limited gene pools, 
and consanguinity ( table 1 ). A third group in whom lipoid 
CAH appears to be common is Arabs from the Eastern 
Province of Saudi Arabia and nearby Qatar, all of whom 
carry the mutation R182H, suggesting a founder effect 
 [45] .  

   True P450scc Defi ciency 

 When lipoid CAH was fi rst described, long before the 
discovery of StAR, it was generally termed ‘20,22 desmo-
lase defi ciency’ because it was thought to be a disorder in 
the enzyme (P450scc) that converts cholesterol to preg-
nenolone  [31] . However, analysis of the gene for P450scc 
was normal in these patients  [46, 47] . Finding StAR mu-
tations in virtually all patients with the lipoid CAH phe-
notype thus posed the question: ‘Why do we not see mu-
tations in P450scc, as we do in all other steroidogenic 

Table 1. Lipoid CAH in Palestinians

Nucleotide Amino acid Families Alleles Countries of
origin

A632G E169G 1 1 Israel
G671T R182L 4 7 Denmark, Jordan
�C650 frameshift 1 2 Kuwait
�2T593 frameshift 2 3 Jordan
C703T R193X 1 2 Israel

Seven patients have been reported from 6 families, 1 of which 
was consanguineous, thus representing 11 unique alleles. Several 
alleles carried more than 1 mutation, so that the total number of af-
fected alleles is greater than 11. Data are from Bose et al. [32, 43].
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enzymes?’ As P450scc is required for placental steroido-
genesis, and placental progesterone is required to sup-
press uterine contractility to maintain pregnancy, we in-
ferred that absence of P450scc and placental steroidogen-
esis would lead to spontaneous abortion, so that P450scc 
defi ciency would result in embryonic lethality  [48] . This 
view appears to be consistent with two recent reports of 
the lipoid CAH phenotype in patients with partial defi -
ciency of P450scc. One patient carried a de novo hetero-
zygous mutation not found in either parent  [49] ; the oth-
er was a compound heterozygote, but one of the ‘muta-
tions’ was simply a polymorphism having no impact on 
P450scc catalysis  [50] . In these cases, the lipoid CAH 
phenotype can again be attributed to a modifi cation of 
the two-hit model of lipoid CAH  [49] . Thus, unusual pa-
tients provide defi nitive tests of models formulated from 
observations from experiments in vitro. 

   The Biochemistry of StAR 

 StAR is a most unusual protein. It is initially synthe-
sized as a 37-kDa protein that is cleaved to a 30-kDa form 
when it is imported into mitochondria. Cloning studies 
and analyses of DNA databases show that StAR is the fi rst 
member of a new class of proteins that have so-called 
START (StAR-related lipid transfer) domains, which are 
structurally related to residues 62–285 of StAR  [51–53] . 
The X-ray crystal structure of two of these proteins, N-218 
MLN64  [54]  and StarD4  [55] , has been determined, show-
ing that each has a helix-grip fold encompassing a hydro-
phobic pocket that appears to be able to bind a single 
molecule of cholesterol. While StAR/cholesterol binding 
curves also indicate that StAR binds a single cholesterol 
molecule  [54] , experiments with StAR-induced lipid trans-
fer between liposomes show that each molecule of StAR 
can transfer several cholesterol molecules in vitro  [56, 57]  
and experiments in vivo suggest that each molecule of 
StAR can promote the movement of hundreds of mole-
cules of cholesterol from the outer mitochondrial mem-
brane (OMM) to the inner mitochondrial membrane 
(IMM)  [58] . This fostered the view that StAR functions in 
the mitochondrial intramembranous space (IMS) to shut-
tle cholesterol from OMM to IMM. Furthermore, the 
cleavage of the 37-kDa StAR to the 30-kDa StAR, simi-
larly to other mitochondrial proteins, led to the mistaken 
notion that the 37-kDa form is a ‘precursor’ and the 30-
kDa protein is the ‘mature’ form. However, it is now clear 
that StAR’s activity is determined by its cellular location, 
and not by its proteolytic cleavage status. Hence the 37-

kDa form is ‘mature’ (i.e. active) and the 30-kDa form 
represents the fi rst step in the intramitochondrial degrada-
tion of StAR  [59] . Deleting the mitochondrial leader pep-
tide prevents StAR from entering the mitochondria and 
confi nes it to the cytoplasm; yet this N-62 StAR molecule 
remains fully active  [60] , and is also able to transfer cho-
lesterol to other membranes, such as the endoplasmic re-
ticulum  [61] . Thus, it appeared that StAR’s mitochondrial 
leader peptide directed StAR’s activity to the mitochon-
dria and was confi ned to that organelle, preventing it from 
transferring cholesterol to other membranes, and that 
StAR’s activity was confi ned to the OMM    [62] . The amino-
terminal domain of StAR (residues 63–193) is protease 
resistant, suggesting tight protein folding  [63] . This would 
presumably slow mitochondrial import, prolonging con-
tact with the OMM, and increasing activity. N-62 StAR 
undergoes a conformational change in acidic environ-
ments, both in solution and in synthetic membranes  [63, 
64] . This conformational change appears to foster associa-
tion with the OMM, facilitating binding of OMM choles-
terol for transfer to the IMM. However, until recently this 
view had been controversial.  

 Using novel fusion proteins that affi x StAR to the 
OMM, confi ne it to the IMS, or affi x it to the IMM, we 
have now proven that StAR acts exclusively on the OMM, 
and is wholly inactive in all other mitochondrial com-
partments  [65] . By fusing StAR to a protein (Tom 20) 
that is a component of the OMM, we confi ned StAR to 
the cytoplasmic side of the OMM and prevented its mi-
tochondrial entry, resulting in a dramatic increase in ac-
tivity. This suggests that the level of StAR activity is 
proportional to the time it resides on the OMM. To test 
this, we built variants of StAR with altered mitochon-
drial leaders designed to either slow or speed its mito-
chondrial entry. Constructs designed for slow entry in-
creased activity both in intact cells and in isolated mito-
chondria; constructs designed to speed entry similarly 
decreased activity. Using an in vitro cell-free transcrip-
tion/translation system and in vitro assays of the kinetics 
of mitochondrial protein import, we could show that 
each construct either increased or decreased the speed of 
mitochondrial protein entry, as designed, and that the 
level of StAR activity was inversely proportional to its 
speed of entry  [65] . Recent experiments have shown that 
only the carboxyl-terminal �-helix of StAR interacts with 
the OMM [65a]. Thus, StAR acts exclusively on the 
OMM to facilitate the transfer of many molecules of cho-
lesterol to the IMM. StAR then is imported into the mi-
tochondria and cleaved to the 30-kDa form. This 30-kDa 
StAR protein is inactive, not because of the proteolytic 
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cleavage but because of its location in the mitochondrial 
matrix from where it cannot reach the cytoplasmic aspect 
of the OMM  [65] . 

   P450c17 – The Qualitative Regulator of 
Steroidogenesis 

 Whereas the StAR/P450scc system is the rate-limiting 
and hormonally regulated step, and hence is the quantita-
tive regulator of steroidogenesis, P450c17 is the qualita-
tive regulator that determines which class of steroids that 
would be produced [8]. When P450c17 is absent, such as 
in the adrenal zona glomerulosa, the products are C21 (21-
carbon) 17-deoxysteroids, such as aldosterone. When the 
17 � -hydroxylase and 17,20 lyase activities of P450c17 are 
present, C19 precursors of sex steroids are produced. Be-
cause all steroid hormones are made from the pregneno-
lone produced by P450scc, the presence or absence of each 
of the activities of P450c17 directs this pregnenolone to-
ward its fi nal metabolic pathway. While all cytochrome 
P450 enzymes can catalyze multiple reactions on a single 
active site, P450c17 is the only one described to date in 
which these multiple activities are differentially regulated 
by a physiologic process. Unlike P450scc, which is found 
in mitochondria, P450c17 is found in the endoplasmic 
reticulum. These ‘microsomal’ P450 enzymes, which in-
clude all of the drug-metabolizing hepatic cytochrome 
P450 enzymes, receive electrons from NADPH via a
fl avoprotein intermediate called P450 oxidoreductase 
(POR).  

   P450c17 – One Enzyme with Two Activities 

 Until the 1980s, observations of human physiology led 
to the mistaken belief that 17 � -hydroxylase and 17,20 
lyase were separate enzymes, regulated independently. 
The adrenals of young children make very little dehydro-
epiandrosterone (DHEA) until the onset of adrenarche 
and the development of the adrenal zona reticularis. An-
drenarche begins at about age 6–8, is independent of the 
gonads or gonadotropins, and continues after the end of 
puberty, since serum DHEA and DHEA-S concentra-
tions are highest between ages 25 and 30  [66–68] . This 
profound increase in adrenal DHEA synthesis proceeds 
without changes in the serum concentrations of cortisol 
and ACTH  [66] , and thus appears to involve selective 
induction of 17,20 lyase activity, while 17 � -hydroxylase 
activity, as indicated by the age-independent cortisol con-

centrations, remains essentially unchanged. This phe-
nomenon, adrenarche, is diffi cult to study, because it only 
occurs in large old-world primates  [69, 70] . Searches for 
a hormonal trigger for adrenarche have been unsuccessful 
 [71–73] . Early reports of familial, apparently autosomal 
recessive isolated 17,20 lyase defi ciency, in which the pa-
tients had normal cortisol values and hence normal 17 � -
hydroxylase activity  [74–76] , appeared to confi rm that 
17 � -hydroxylase and 17,20 lyase were separate enzymes 
encoded by separate genes. However, biochemical studies 
with the pig  [77–80]  and guinea pig  [81, 82]  showed that 
a single protein, cytochrome P450c17, catalyzed both re-
actions on single active site, and nonsteroidogenic cells 
transfected with vectors that expressed bovine  [83]  or hu-
man  [84]  P450c17 acquired both 17 � -hydroxylase
and 17,20 lyase activities. Accordingly, genetic studies
showed that there was a single species of P450c17 mRNA 
that was identical in the human adrenal and gonad  [85] , 
because it was encoded by a single-copy gene  [86]  (now 
termed CYP17) on chromosome 10q24.3  [7, 87, 88].  
Thus, although the transcriptional regulation of human 
P450c17 is of central importance  [89–91] , to regulate the 
amount of P450c17 present, the differential regulation of 
the two activities of P450c17 must lie at one or more 
points downstream from its gene. All present data now 
indicate that this regulation is mediated by several fac-
tors, all of which infl uence electron fl ow from NADPH 
via POR to P450c17  [92] . 

   Role of Redox Partners in Regulating 17,20 
Lyase Activity 

 Hall was fi rst to note that POR is much more abundant 
in the porcine testis, which has a high ratio of lyase to 
hydroxylase activity, than in the porcine adrenal, which 
has low lyase activity  [93, 94] . Combining these proteins 
in vitro showed that POR was needed for both activities, 
and had suggested that cytochrome b 5  could selectively 
augment the 17,20 lyase reaction  [93–95] . It had gener-
ally been thought that cytochrome b 5  can serve as an al-
ternative electron transfer protein, taking the place of 
POR in certain circumstances  [96, 97] . Transfection of 
nonsteroidogenic monkey kidney COS-1 cells with a vec-
tor expressing human P450c17 permits the cells to cata-
lyze 17,20 lyase activity that converts 17-OH pregneno-
lone to DHEA, but not 17-OH progesterone to andro-
stenedione  [84] . When these cells are cotransfected with 
a vector expressing human POR, conversion of 17-OH 
pregnenolone to DHEA increases, but 17-OH progester-
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one is not converted to androstenedione  [98] . Thus, qual-
itative data obtained in whole living cells indicated that 
human P450c17 catalyzes 17,20 lyase activity only with 
�   5  substrates, and that this activity could be augmented 
by excess POR.  

 To understand the enzymology of P450c17 in detail, 
we utilized yeast systems in which the endogenous yeast 
genes for POR or b 5  were disrupted, permitting rigorous 
kinetic analysis of the role of each potential redox partner 
on each of the four potential reactions of human P450c17 
 [99] . These data confi rm that POR is required for both 
17 � -hydroxylation and 17,20 lyase activity and that the 
17,20 lyase reaction is much more severely impeded by 
low concentrations of POR than is the 17 � -hydroxylase 
reaction. Cytochrome b 5  selectively augments 17,20 lyase 
activity when POR is present, but b 5  alone cannot sup-
port catalysis. Apo-b 5 , which is the cytochrome protein 
without its heme group, is as effective at promoting 17,20 
lyase activity as holo-b 5  which has the heme group, indi-
cating that b 5  augments the 17,20 lyase activity of P450c17 
as an allosteric facilitator, and not as an electron donor. 
The expression of b 5  in the adrenal is largely confi ned to 
the zona reticularis  [100, 101]  and this expression in-
creases during adrenarche  [102] , so that adrenal levels of 
b 5  correlate with DHEA secretion. Surprisingly, 17-OH 
progesterone is a poor substrate for human P450c17. The 
K m  of the 17,20 lyase reaction is 10 times higher, and the 
V max  is reduced to 30% when � 4  17-OH progesterone is 
the substrate compared to the values with  �  5  17-OH preg-
nenolone. Thus, the 17,20 lyase action of human P450c17 
is about 30-fold greater with  �  5  substrates than with  �  4 

 substrates. As a result, most androstenedione is produced 
by the action of 3 � -hydroxysteroid dehydrogenase on 
DHEA, and only minimal quantities derive from 17-OH 
progesterone, so that most human sex steroid production 
is from DHEA.  

   Isolated 17,20 Lyase Defi ciency 

 Several patients with apparent isolated 17,20 lyase de-
fi ciency were described in the 1970s and 1980s, but the 
demonstration that a single enzyme encoded by a single 
gene catalyzed both 17 � -hydroxylase and 17,20 lyase ac-
tivities put the existence of such a disease in doubt. Fur-
ther questions were raised when Waterman’s group 
showed that a patient with apparent isolated 17,20 lyase 
defi ciency in fact had P450c17 mutations that caused 
complete 17 � -hydroxylase defi ciency  [103] . No geneti-
cally and enzymologically proven cases of isolated 17,20 

lyase defi ciency had been reported until 1997, when we 
studied two patients from rural Brazil who had clinical 
and hormonal fi ndings consistent with isolated 17,20 ly-
ase defi ciency  [104] .  

 DNA sequencing showed that each was homozygous 
for a different mutation; in one patient, the arginine at 
position 347 was replaced with histidine (R347H) and, 
in the other patient, the arginine at position 358 was re-
placed with glutamine (R358Q). Transfection of COS-1 
cells with vectors expressing these P450c17 mutants 
showed that each retained only about 5% of normal 17,20 
lyase activity but retained about 65% of normal 17 � -hy-
droxylase activity. Despite this loss of lyase activity, 17-
OH pregnenolone acted as a strictly competitive inhibitor 
of the hydroxylase reaction, showing that these mutations 
did not affect the active site  [105] . However, the 17,20 
lyase activity of these mutants could be partially restored 
by adding excess b 5 , suggesting that they affect binding of 
redox partners and consequent electron transfer  [105] . 
Molecular modeling of P450c17 based on the known X-
ray crystallographic structures of several bacterial cyto-
chrome P450 enzymes showed that the two mutations 
altered the distribution of electrostatic charge on the sur-
face of the P450c17 protein in the region that interacts 
with POR  [106] . Thus, changing a single positive charge 
to neutral or to a negative charge partially decreased the 
ability of P450c17 to interact with POR, so that 17 � -hy-
droxylation was relatively unaffected, but 17,20 lyase ac-
tivity was severely disrupted, in fashion very analogous 
to the persistence of 17 � -hydroxylase activity but the rel-
ative absence of 17,20 lyase activity when the concentra-
tions of POR are low. Thus, isolated 17,20 lyase defi cien-
cy is an important ‘site-directed mutagenesis experiment 
of nature’ that identifi es redox partner interactions as cru-
cial regulators of 17,20 lyase activity.  

   POR Defi ciency  

 A rare variant of 17,20 lyase defi ciency seen in asso-
ciation with partial defi ciency of steroid 21-hydroxylase 
was fi rst described in 1985 by Peterson et al.  [107]  and is 
now understood in detail  [108] . Mutations in the genes 
for P450c17 and P450c21 (steroid 21-hydroxylase) were 
sought but not found. In 1986, we suggested that this dis-
order was a defi ciency of POR  [109] , but this seemed un-
likely as POR knockout mice do not survive past the mid-
dle of fetal development  [110, 111] . Furthermore, most 
children with apparent combined 17 � -hydroxylase and 
21-hydroxylase defi ciencies also have the Antley-Bixler 
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skeletal malformation syndrome (ABS), consisting of cra-
niosynostosis, radioulnar or radiohumeral synostosis, 
and mid-face hypoplasia, and half also have genital anom-
alies. About half of the children with ABS have mutations 
in fi broblast growth factor receptor 2 (FGFR2), as do 
most patients with the Apert, Crouzon, Jackson-Weiss 
and Pfeiffer craniosynostosis syndromes, but the ABS pa-
tients who have FGFR2 mutations do not have abnormal 
steroidogenesis, and those who lack FGFR2 mutations 
have abnormal steroidogenesis  [112] . The availability of 
the human POR gene sequence provided by the human 
genome project permitted the examination of the POR 
gene in this disorder. We found   POR mutations in 3 chil-
dren with ABS and abnormal steroidogenesis, and also in 
an adult woman with amenorrhea, hypertension, cystic 
ovaries and hormonal fi ndings suggesting partial com-
bined 17 � -hydroxylase and 21-hydroxylase defi ciencies 
 [113] . We found fi ve different POR missense mutations, 
and tested the ability of each to receive electrons from 
NADPH and to donate them to both a test substrate (cy-
tochrome c) and a real substrate (P450c17). There was 
substantially better phenotype/genotype correlation with 
the P450c17 assays than with the cytochrome c assays 
 [113] . This indicates that POR mutants will donate elec-
trons to different substrates with different effi ciencies; 
thus, a POR mutant may severely affect some P450 en-
zymes but not others. As POR donates electrons to he-
patic drug-metabolizing P450 enzymes, minor POR se-
quence variants may contribute to genetic variations in 
drug metabolism. The similarity between the hormonal 
phenotypes in POR defi ciency and mutations in the POR 
(redox partner) binding site of P450c17 further under-
scores the crucial role of electron donation in regulating 
17,20 lyase activity and hence regulating androgen syn-
thesis. We recently reported a large series of 32 such pa-
tients, confi rming and extending these observations 
 [113a] . 

   Serine Phosphorylation of P450 Increases 
17,20 Lyase Activity 

 Radiolabeling studies of COS-1 cells transfected with 
a human P450c17 expression vector or of untransfected 
human adrenal NCI-H295 cells  [114] , which express all  
 human steroidogenic enzymes  [115] , showed that human 
P450c17 is a phosphoprotein  [116] . This phosphoryla-
tion is rapidly induced by cAMP, occurs on serine and 
threonine but not on tyrosine residues, and increases the 
17,20 lyase activity of P450c17. Conversely, dephosphor-

ylation of microsomes containing P450c17 ablates 17,20 
lyase activity without reducing 17 � -hydroxylase activity 
and without affecting steroid binding to the enzyme. The 
mechanism by which serine phosphorylation promotes 
17,20 lyase activity is not yet known. Phosphorylated ser-
ine residues near the redox partner binding site may in-
crease the affi nity of P450c17 for POR or b 5  (or both), 
thus effectively increasing the fl ow of electrons to the 
P450. The kinase responsible for P450c17 serine phos-
phorylation has not been identifi ed yet, but recent data 
indicate that the degree of phosphorylation in vivo is reg-
ulated by the counterbalancing actions of the kinase and 
protein phosphatase 2A, which in turn is regulated by 
phosphoprotein SET  [117] . 

   Serine Phosphorylation, Adrenarche and the 
Polycystic Ovary Syndrome 

 The polycystic ovary syndrome (PCOS) is a heterog-
enous disorder characterized by hirsutism, virilism, hy-
perandrogenism, menstrual irregularities, chronic anovu-
lation, obesity, insulin resistance, acanthosis nigricans, 
high concentrations of LH and ovarian cysts. Hyperan-
drogenism and insulin resistance appear to be primary 
lesions, and the other fi ndings are secondary events  [118] . 
The hyperandrogenism in women with PCOS is of both 
ovarian and adrenal origin  [119–122] . The adrenal hy-
perandrogenism of PCOS resembles an exaggerated form 
of adrenarche, and girls with premature adrenarche are 
more likely to develop PCOS  [123, 124] . A gain-of-func-
tion disorder in the pathway leading to the serine/threo-
nine phosphorylation of P450c17 could account for such 
increases in both adrenal and ovarian androgen secretion 
and an earlier age of adrenarche  [116] , but such muta-
tions have not yet been reported. The hyperinsulism and 
insulin resistance of PCOS is at the level of insulin recep-
tor signal transduction  [125, 126] . Serine phosphoryla-
tion of the  �  chain of the insulin receptor interferes with 
the tyrosine phosphorylation of the receptor that normal-
ly follows binding of insulin  [127–129] . Furthermore, 
some PCOS women appear to have insulin receptors in 
their fi broblasts that are hyperphosphorylated  [130] . 
Thus, a gain-of-function mutation in a serine-threonine 
kinase or its signal transduction pathway might increase 
the serine hyperphosphorylation of both P450c17 and the 
 �  chain of the insulin receptor, thus accounting for both 
the hyperandrogenism and insulin resistance of PCOS 
with a single molecular lesion. 
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