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Objective Intercalations of plant growth regulator 4-chloro phenoxy acetate (4CPA) with zinc oxide (ZnO), developed using ZnO-layered 
hydroxide (ZLH) as host material and 4CPA as a guest.
Methods Ion exchange technique via sol-gel method synthesized under aqueous environment, resulted in the formation of inorganic–
organic nanotube materials.
Results The release of 4CPA from its nanohybrid was found to occur in a controlled manner, governed by pseudo-second order kinetics 
model. The maximum amount of 4CPA released was governed by pseudo-second order kinetics model. Powder X-ray diffraction showed 
that the basal spacing of the nanohybrid was developed with the increasing of 4CPA concentrations; the maximum concentration of 0.2M 
shows an interlayer basal of 1.9 nm. FTIR study showed that the intercalated 4CPA-ZnO spectral feature is generally similar to that of 4CPA, 
but with bands  sightly shifted due to the formation of host–guest nanotubes.
Conclusion The resulted nanotubes were characterized by using scanning electron microscopy (SEM), and transmission electronic microscope 
(TEM), shows a uniform nanoparticles and monodisperse with average diameter of 35 nm, which correlated a very well with size scale 
obtained from XRD data. The development of crystals is the function of concentrations.
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Introduction
Zinc oxide (ZnO) has attracted much attention for its wide direct 
band gap (3.37 eV) and large exciton binding energy 
(60 meV) at room temperature.1 Nanoparticles have been widely 
used in optical, resonant, electrical and magnetic fields. Various 
chemical methods have been used for the production of 
nanoparticles with narrow size distribution such as micro 
emulsion method, electro spray pyrolysis and hydrothermal 
methods. Semi-conducting and piezoelectric material have 
many useful properties, such as optical absorption, emission,2 
conductivity,3 photo catalysis4 and sensitivity to gases.5 Therefore, 
many efforts are concentrated on the synthesis of ZnO 
materials.6–13 Among those methods based on physical and 
solution-based chemical technologies to synthesize ZnO 
particles, organic complexion additives are always used to control 
the growth of the crystals.14–20 By the addition of organic active 
molecules, Zn complex will be formed, which owns certain 
stability in both air and aqueous solution. So, it is necessary to 
find some effective methods to induce the conversion of the Zn 
complex into ZnO particles. Thermal decomposition is a 
common method to get ZnO particles. For example, fiber-like 
ZnO materials from the decomposition of bis(acetylacetonato) 
zinc fibers at 110°C in the presence of superheated steam was 
obtained,19 material scientists are inclined to realize the diversity 
of morphological ZnO particles with solution-phase method, 
which is conducted by precipitating the preformed complex into 
ZnO sediments,20–22 4-chloro phenoxyacetic acid (4CPA), as one 
of the common organic additive. For example, in this work a 
stable complex composed of 4CPA was formed before further 
treatments (at 30°C), and then ZnO particle aggregates or rods 
were obtained. A similar work was reported by Shishido et al.23 
All these results prove that the complex plays an important role 
as templates, a novel method, which supplies a facile technology 
to transform the preformed Zn-4CPA complex into ZnO 
particles with various morphologies, which will be a good 

prospect for material science. In this work, we have designed a 
novel route to form templates (Zn-4CPA complex) first,  
and then induce the hydrolysis of the template to produce  
ZnO particles. This method has its special advantages: (1)  
The transformation of Zn-4CPA complex is facile and  
quite different from those traditional ways like thermal 
decomposition, refluxing and hydrothermal treating and 
heating; (2) We select 4CPA as complex reagents to realize the 
diversity of morphological ZnO particles; and (3) It is an 
economical route with low energy consumption (low 
temperature, normal atmospheric pressure). Novel slice-like and 
quasi sphere-like ZnO particles have been successfully fabricated 
accordingly. The growth mechanisms of the nanoparticles 
induced an interaction between the 4CPA and Zn cations.

Materials and Methods
ZnO purchased from ACrose (USA), 4CPA from Merck, was 
used without further purification. Solutions of 0.05, 0.1, 0.2M 
of 4CPA were prepared by dissolving in 50 ml of 90% ethanol. 
This solution was dropped into a solution prepared by 1 gm of 
ZnO in 100 ml de-ionized water, in a conical flask, the resulted 
solution under N2 gas was stirred, and formation of gel 
suspension started, followed by temperature aging at 70°C for 
18 hours. It was then cooled, centrifuged and washed four 
times with de-ionized water, dried in oven at 70°C Then it was 
grinded and kept in a sample bottle for further analyses.

Characterizations
Powder X-ray diffraction (PXRD) patterns were obtained with 
a Shimadzu XRD-6000 powder diffractometer using λ = 
1.540562 Å at 40 kV and 30 mA with a scan rate of 0.5 min/
degrees. Fourier transform infrared (FTIR) spectra were 
recorded by using a spectrophotometer thermo Nicolet Ft-IR 
Nexus self supporting sample in the range of 4000–400 cm–1, 
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progressing with the intensities of the 
ray (003) clearly was concentration 
dependent; and within the same time 
this sharp peak moved in the direction 
of small angle, which indicates that 
good crystals were made from the 
resulted 4CPA-ZnO when we used high 
concentration from 4CPA. 

It is clear that the samples are indexed 
to typical wurtzite-type ZnO. And all the 
sharp diffraction peaks indicate good 
crystals of the obtained nanostructures 
up to 0.2M concentrations of 4CPA, the 
corresponding energy-dispersive spectra 
were recorded. It can be obviously 
observed that the spectra of sample 
as-grown and the EDS studies (Fig. 3) 
reveal that no trace of other elements was 
detected in any grown samples. These 
XRD patterns and EDS spectra confirm 
the formation of pure ZnO intercalated 
with 4CPA to form a nanomaterial. The 
morphology of the as-prepared sample 
was investigated by SEM. Fig. 2 shows a 
typical SEM image of the ZnO–WPI 
(whey protein isolate) composite.

Table 1 shows the EDS studies of 
ZnO intercalated with 4CPA in three 
positions as we have seen in Fig. 2, the 
elements composite of the ZnO with 
4CPA-nanosheet.

From this TEM micrograph, it is 
clear that our product is a composite of 
ZnO and WPI, i.e. WPI granule with a 
size of about 70 nm embedded with sev-
eral ZnO nanoparticles. These nanopar-
ticles are uniform and monodisperse 
with average diameter of 35 nm, which 
correlates very well with size scale 
obtained from XRD data (70 nm). The 
development of crystals is function of 
concentrations as we see in Fig. 1 up to 
the concentration of 0.2M which is 
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Fig. 1 XRD pattern of three concentrations of 4CPA intercalated with ZnO nanohybrids.

Fig. 2 A typical SEM image of the ZnO–WPI composite 
processing option: All elements were analyzed (normalized). Fig. 3 SEM image of hexagonal crystals.

and the thermogravimetry, derivative 
thermogravimetry (TG/DTG) were 
carried out with a Setaram TG-DSC-11 
apparatus with fully programmable 
heating and cooling sequence sweep gas 
valve switching and data analysis. The 
surface morphology and bulk structure 
of the sample was observed by scanning 
electron microscope (SEM) model JOEL 
(JSM-6400) and TEM Hitachi (H 7100).

Results and Discussion
The evidence for phase structure of the 
as-prepared sample was obtained by 
XRD pattern, as shown in Fig. 1. All the 
diffraction peaks can be indexed to 

those of hexagonal ZnO. After refinement, 
the lattice constants, a = 3.251 Å, c = 
5.210 Å were obtained, which was very 
close to the reported value for ZnO  
(a = 3.253 Å, c = 5.209, JCPDS card, No. 
80-0075). The broadening of the ZnO 
XRD peaks suggests that the grain sizes 
are on a nanometer scale. The average 
particles size was estimated to be 70 nm 
based on the Scherrer equation, D ¼ Kλ 
βdcosθ; here K is shape factor of average 
crystallite, λ is wavelength for the Kα1 
(1.54056 Å), β is full width at half-
maximum of the diffraction line and θ is 
Bragg’s angle. Fig. 1 shows that the XRD 
patterns of the synthesized nanosheet 
thin films made up of nanorods 
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reported to be 1.95 nm for the 003  
plane. The ZnO–WPI particles were 
stable under the electron beam in 
vacuum used for TEM measurements, 
suggesting that the binding between 
ZnO and WPI is strong. The corre-
sponding selected area electron diffrac-
tion (SAED) pattern of ZnO nanoparticle 
is shown as an inset in Fig. 3 as a hexag-
onal crystal structure.

Figs. 6 and 7 show the TG-DTG 
curves of ZnO, and ZnO-4CPA shows 
the details of the TG, which reveal  
two distinguishable weight loss steps. 
The first step indicate losses 9.67% 
started from 37°C terminating at 143°C 
with maximum temperature of 138.7°C; 
this is attributed to the loss of physical 
adsorbed and the interlayer water. The 
next stage with total loss which is equal 

to 35.3% at the temperature between 
250–396°C and the maximum at 320°C, 
is due to the decomposition and subtle 
combustion of 4CPA. The total loss 
achieved is around 47.3%. This is in 
accord with the elemental analysis.

D3h symmetry is confirmed by the 
presence of band at 834 cm–1 (Fig. 8).13 
The OH vibrations of the layers can be 
observed by a band in the 3600–3000 
cm–1 region. This band has a broad base 
due to hydrogen bonds established with 
the hydration water molecules.

The FTIR spectrum of the hybrid 
presented C–H vibrations of the organic 
chain at 2932 cm−1 and the asymmetric 
and symmetric stretching of COO− 
appears at 1550 and 1410 cm–1. The 
latter band is overlapped with C–H 
vibrations, which forms a shoulder at 
1450 cm–1 (Fig. 8).

Table 1. EDX elements analysis

Spectrum C O Cl Zn Total
Spectrum 1 45.15 15.98 15.76 23.11 100.00
Spectrum 2 41.78 14.49 14.98 22.93 100.00
Spectrum 3 47.71 14.71 12.82 23.97 100.00
Max. 47.71 14.49 18.76 23.97 
Min. 41.78 13.98 12.82 22.93 
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Fig. 6 TG-DTG of commercial ZnO as standard for thermal analysis.
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Fig. 7 TG-DTG of ZnO-4CPA nanomaterial shows the appearance 
of two indo thermic bands at 138°C and 320°C.

Fig. 4 SEM image shows the superficial interactions between ZnO 
layers and the anion 4CPA.

Fig. 5 Transmitting Electronic Microscope (TEM) shows the 
nanotube of the resulted nano composite from 4CPA and ZnO.
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band of water molecule. The band at 
2930 cm–1 is attributed to C–H stretching 
vibration of the intercalated 4CPA (from 
CH2COO– group). Peaks at 1550 and 
1326 cm–1 are assigned to anti symmetric 
and symmetric stretching vibrations of 
the –COO– group. The bands observed 
at around 1499 and 1410 cm–1 
correspond to the C=C bond of the 
aromatic ring of 4CPA, herbicides.

The C–O–C anti symmetric and 
symmetric stretching bands appear at 
1224 and 1071 cm–1. Bands in the lower 
wave number region (i.e., 400–800 cm–1) 
are due to M–O and M–OH bending 
vibration in the ZnO layers that can be 
seen in FTIR spectrum of Zn-4CPA and 
ZnO. A band observed at 829 cm–1 
corresponding to –CH2 rocking. All this 
indicates that it was accruals 4CPA 
intercalated in the ZnO interlayer which 
can be clearly observed at 2926 cm–1. 
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Fig. 8 FTIR spectrums of ZnO standard and ZnO-4CPA.
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