Study the role of dyslipidemia in cases of neuropathy with type 2 diabetes mellitus

Hossam Abd El Monem Alia, Ahmed Salama Al Adlb

^aNeurology Department, Al-Azhar University, Faculty of Medicine, Damietta, Egypt, ^bInternal Medicine Department, Al-Azhar University, Faculty of Medicine, Damietta, Egypt

Correspondence to Ahmed Salama Al Adl, MD Internal Medicine, Assistant professor of Internal Medicine, Internal Medicine Department, Al-Azhar University, Faculty of Medicine, New Damietta, Damietta, Egypt. Tel: 00201227698202;

e-mail: salama139@azhar.edu.eg

Received: 8 July 2020 Revised: 11 October 2020 Accepted: 17 December 2020 Published: 30 April 2021

Al-Azhar Assiut Medical Journal 2021,

19:143-151

Background

Diabetic neuropathy is one of the most common neurological diseases. Dyslipidemia is very common in diabetic patients and thought to add to the effect of diabetes on peripheral nerves.

Objectives

To assess the effect of dyslipidemia on diabetic peripheral neuropathy among patients with type 2 diabetes mellitus.

Patients and methods

A total of 60 patients with peripheral diabetic polyneuropathy were included and divided into two groups: the first included 30 patients with diabetic neuropathy and dyslipidemia and the other 30 patients had diabetic neuropathy without dyslipidemia. Another 30 healthy volunteers were included as a control group. All were subjected to full history taking, clinical examination, laboratory investigations, and neurophysiological studies.

Hypertension and smoking were significantly increased in cases when compared with controls. Regarding the severity of neuropathy, it was mild in seven (11.7%) patients, moderate in 34 (56.7%) patients, and severe in 19 (31.7%) patients. Neurophysiological studies of the studied populations revealed significant changes of both motor and sensory parameters in cases when compared with controls and in the group with dyslipidemia when compared with the group without dyslipidemia. In addition, there was a significant correlation between lipid profile and each of glycated hemoglobin, fasting and postprandial blood sugar, and different neurophysiological examinations.

Conclusion

Dyslipidemia added to the hazardous effect of diabetic neuropathy on neurophysiological studies. In addition, there was a significant correlation between lipid profile and changes in nerve conduction studies.

Keywords:

amplitude, conduction velocity, dyslipidemia, nerve conduction studies, neuropathy

Al-Azhar Assiut Med J 19:143-151 © 2021 Al-Azhar Assiut Medical Journal 1687-1693

Introduction

Diabetic peripheral neuropathy (DPN) is a frequent complication of type 2 diabetes mellitus (DM), with an estimated prevalence of 8% in newly detected cases of diabetes and more than 50% in cases with a long evolution of the disease [1]. Currently, there is no cure, and management primarily comprises symptom relief. So, there is a need for early identification and detection of etiological factors that underlie DPN development and that can provide avenues for preventive care [2].

Despite tight glycemic control, diabetic neuropathy continues to develop as a microvascular complication in a significant proportion of diabetic patients, especially type 2 DM [3]. The progress of diabetic neuropathy is accompanying by several modifiable and nonmodifiable risk factors like hypertension, dyslipidemia, insulin resistance, obesity, cigarette smoking, and alcohol drinking in addition to the degree of hyperglycemia [4].

The exact role of cholesterol metabolism in the development of DPN is controversial. Some clinical studies have found that a lowering of serum cholesterol levels had a positive effect on the course of DPN, which is mainly attributed to the lowering of low-density lipoprotein (LDL) cholesterol levels and to antiinflammatory and antioxidative effects of statin treatment [5]. However, other clinical studies have found that low serum cholesterol levels are related to neuropathic symptoms and impairment nerve regeneration after axonal damage in neurons of the

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

central and peripheral nervous systems [6,7]. This association was mainly attributed to an insufficient supply of cholesterol to neurite tips and adjacent Schwann cells of regenerating axons as a consequence of a decrease in lipoproteins [8]. The aim of the study was to assess the effect of dyslipidemia on DPN among patients with type 2 DM.

Patients and methods

A case-control study was conducted at the Neurophysiology Unit of Neurology Department and Internal Medicine Department at Al-Azhar University Hospital, New Damietta, Egypt. The study was approved by the local ethical committee of Damietta faculty of medicine Al-Azhar University, on the 13th of January 2019. Before participation in the study, the study procedure was clarified for each subject, and informed consent from participants was provided by each person. The study was conducted on two groups of patients presented clinically with diabetic peripheral polyneuropathy and diagnosed according to diagnostic criteria [9] (bilateral, symmetrical, distal motor, and sensory impairment, with a graded increase in severity distally; it was manifested with pain, tingling, numbness, and muscle weakness) who were referred from the outpatient clinic of neurology of Al-Azhar University Hospital, New Damietta, Egypt. Each group included 30 patients, where one of the groups included patients with hyperlipidemia. Moreover, the study included 30 healthy participants as a control group.

Inclusion criteria

All patients having diabetic polyneuropathy were included. The patients with type 2 DM were previously diagnosed according to the following: history of type DM, patients receiving antidiabetic medications, fasting blood glucose more than or equal to 126 mg/dl, 2 h postprandial blood glucose more than or equal to 200 mg/dl, and glycated hemoglobin (HbA1c) more been 6.5% [10]. Dyslipidemia was diagnosed according to LDL more than or equal to 140 mg/dl, triglycerides (TGs) more than or equal to 150 mg/dl, cholesterol more than 240 mg/dl, and high-density lipoprotein (HDL) less than 140 mg/dl [11].

Exclusion criteria

Exclusion criteria were as follows: (a) all patients having radiculopathy; (b) severe systemic diseases rather than DM or hyperlipidemia, like alcoholism, liver cell failure, and chronic kidney disease; and (c) type 1 DM.

All included patients were subjected to the following: full history taking, neurological examination, laboratory investigations, and neurophysiological examination. The clinical diagnosis of polyneuropathy was done according to the diagnostic criteria of Hanewinckel et al. [9] (symmetrical, bilateral distal motor and sensory impairment with a graded increase in severity distally; it was manifested with pain, tingling, numbness, and muscle weakness). The assessment of the severity of polyneuropathy in the patients was done by total neuropathy symptom score [12]. Neuropathy symptom score consist of five questions. Each question was assessed with points (p) in order to calculate the total symptom score. The total symptom score was calculated and converted into grade of symptom: 3-4 points were converted into mild symptoms, 5-6 points into moderate symptoms, and 7–9 points into severe symptoms.

- (1) Burning, numbness, and tingling (2p) or fatigue, cramping, and aching (1p) feelings in the lower extremity.
- (2) The feelings (symptoms) are present in the feet (2p) or calf (1p).
- (3) There are nocturnal exacerbations of the feelings (symptoms) (2p) or they are equally present during the day and night (1p).
- (4) The feelings (symptoms) wake the patient up from sleep (1p).
- (5) Walking (2p) or standing (1p) maneuvers reduce symptoms.

In addition, the neurophysiological examination for all patients and control was done according to the protocol of polyneuropathy as described by Wisotzky *et al.* [13].

Electrophysiological studies were performed using Nihon Kohden Machine, model UT-0800 J, Box BOARD (2CH) for JB-942BK (Japan), at the Neurophysiology Department of Al-Azhar University Hospital, New Damietta, Egypt.

General principles

Sensory and motor nerve conduction studies (NCSs) were performed with surface stimulation and recording of the compound muscle action potential from the surface electrode. Cleaning of the site for examination was done with alcohol. Ground is placed between the stimulating and recording electrodes.

Nerve conduction studies (NCSs)

(A) Motor nerve conduction: Motor NCS are performed by electrical stimulation of a peripheral

nerves (tibial, peroneal and median) and recording motor latency, amplitude and conduction velocity from a muscle supplied by these nerves (abductor hallucis brevis, extensor digitorum brevis and abductor pollicis brevis) and the ground electrode: Placed between recording electrode and the stimulator.

(B) Sensory nerve conduction (antidromic): Sensory NCS are performed by electrical stimulation of a peripheral nerves (sural and median) and recording sensory latency, and amplitude from a purely sensory portion of the nerve, (area behind and below lateral malleolus and index finger) and the ground electrode: Placed on the dorsum of the hand between recording electrode and the stimulator. Motor NCSs were performed by electrical stimulation of peripheral nerves (tibial, peroneal, and median) and recording of motor latency, amplitude, and conduction velocity (CV) from a muscle supplied by these nerves (abductor hallucis brevis, extensor digitorum brevis, and abductor pollicis brevis) and the ground electrode, which was placed between recording electrode and the stimulator.

Electrophysiological studies interpretation data

- (1) Criteria for demyelinating polyneuropathy are based on the need of three of the following four factors: prolonged distal latency in two or more nerves not at entrapment sites (distal latency >130% upper lower normal), CV slowing in two or more nerves not at entrapment sites (CV <75% lower limit normal), prolonged late response (>130% upper lower normal), and conduction block or temporal dispersion in one or more nerves [definite conduction block if distal compound motor action potential (CMAP) is less than 50% area of proximal CMAP] [13].
- (2) Criteria for axonal polyneuropathy: if borderline CV with low amplitudes in two or more nerves.

The following laboratory investigations were done: lipid profile (TGs, cholesterol, HDL, LDL), random blood sugar, postprandial plasma glucose, liver and renal function tests, and HbA1c.

Table 1 General characteristics of the studied populations

Mandalala a	0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	T 1	D l
Variables	Group 1 [n (%)]	Group 2 [n (%)]	Group 3 [n (%)]	Test	P value
Age	50.93±4.49	50.93±3.68	51.50±3.85	0.19	0.82
Sex					
Male	13 (43.3)	15 (50.0)	16 (53.3)	0.62	0.73
Female	17 (56.7)	15 (50.0)	14 (46.7)		
Hypertension	16 (53.3)	1 (3.3)	0	34.95	<0.001*
Smoking	11 (36.7)	1 (3.3)	0	21.34	<0.001*

^{*}Significant.

Statistical analysis

The collected data were organized, tabulated, and statistically analyzed using statistical package for the social sciences (SPSS), version 16 (SPSS Inc., Chicago, Illinois, USA). Numerical data were presented as mean ±SD, whereas categorical data were presented as frequency and percent. Comparison among groups was done by independent samples (t) test for two means and multivariate analysis of variance (MANOVA) for comparing multivariate sample means with least significant differences as post-hoc analysis. Comparison among groups of categorical variables was done by χ^2 test or Mann–Whitney test when appropriate. In addition, correlation between two variables was done by estimation of Pearson correlation coefficient (r); it is considered mild if r less than 0.3, moderate if r more than 0.3, and less than 0.7 and powerful if r more than 0.7. It was proportional if the sign is positive and inverse if the sign is negative. P value less than 0.05 was considered significant for interpretation of results.

Results

The study was conducted on two groups of diabetic patients with polyneuropathy: group 1 comprised diabetes with hyperlipidemia, and group 2 comprised diabetes without hyperlipidemia. Moreover, 30 healthy participants were included as a control group. All patients were referred from the outpatient clinics of neurology and internal medicine of Al-Azhar University Hospital, New Damietta, Egypt. Patient groups and control were comparable regarding age and sex. The mean age was 50.93±4.49 years. Males represented 13 in group 1, 15 in group 2, and 16 in the control group. There was a statistically significant increase of hypertension and smoking in group 1 when compared with group 2 or group 3 (Table 1).

Regarding the severity of neuropathy according to total neuropathy symptom scale, it was mild in seven (11.7%) patients, moderate in 34 (56.7%) patients, and severe in 19 (31.7%) patients, and there was a significant increase of severe neuropathy in group 1 when compared with group 2.

Cholesterol and TGs were significantly increased in group 1 when compared with groups 2 and 3. There was a statistically significant increase of LDL and HDL in group 1 when compared with other two groups.

The motor conduction study of median, tibial, and peroneal nerves as a result of MANOVA for comparing multivariate sample means with least significant differences as post-hoc analysis showed the following: statistically significant prolongation of terminal latency in groups 1 and 2 when compared with control group, and the prolongation of terminal latency in group 1 is more when compared with group 2; a statistically significant reduction of amplitude of CMAP of the examined motor nerves, except the right peroneal nerve, in groups 1 and 2 when compared with control group, but without statistically difference of reduction of amplitude of CMAP in group 1 when compared with group 2; and a statistically significant reduction of CV in groups 1 and 2 when compared with control group, and the reduction of CV in group 1 is more when compared with group 2 (Tables 2 and 3).

The sensory conduction study of median and sural nerves and as a result MANOVA for comparing

multivariate sample means with least significant differences as post-hoc analysis showed the following: there was a statistically significant prolongation of terminal latency in groups 1 and 2 when compared with control group, and the prolongation of terminal latency in group 1 is more when compared with group 2, and also there was a statistically significant reduction of amplitude of sensory nerve action potential of examined nerves in groups 1 and 2 when compared with control group but without statistically difference of reduction of amplitude of CMAP in group 1 when compared with group 2 (Tables 4 and 5).

Axonal polyneuropathy was present in 12 patients, representing two patients in group 1 and 10 patients in group 2. Demyelinating polyneuropathy was present in 15 patients, representing eight patients in group 1 and seven in group 2, and mixed polyneuropathy was present in 33 patients, representing 20 in group 1 and 13 in group 2. There was a statistically significant increase in mixed neuropathy in group 1 when compared with group 2. The control group had no neuropathy.

There was a significant negative (inverse) correlation between HDL and each of HbA1c, fasting blood glucose, and postprandial blood glucose, whereas

Table 2 Comparison among studied groups regarding motor nerve neurophysiological studies

	Grou	ıp 1	Gro	up 2	Cor	ntrol	F	Р
	Mean	SD	Mean	SD	Mean	SD		
Right median nerve								
Latency (ms)	8.87	0.82	5.08	1.27	3.81	0.27	41.367	0.000*
Amplitude (mV)	3.76	0.86	3.57	0.97	5.87	1	55.05	0.000^{*}
CV (m/s)	30.4	6.87	38.07	13.28	57.24	4.73	69.978	0.000*
Left median nerve								
Latency (ms)	5.87	0.82	5.08	1.27	3.81	0.27	41.37	0.000*
Amplitude (mV)	3.76	0.86	3.57	0.97	5.92	1.02	56.89	0.000*
CV (m/s)	30.4	6.86	38.06	13.28	57.24	4.74	69.98	0.000*
Right tibial nerve								
Latency (ms)	7.17	0.47	6.52	1.09	5.73	0.32	31.013	0.000*
Amplitude (mV)	3.8	1.04	3.62	1.09	5.74	0.58	48.81	0.000*
CV (m/s)	30.65	5.68	36.47	9.88	52.39	4.67	75.193	0.000*
Left tibial nerve								
Latency (ms)	7.17	0.47	6.52	1.09	5.73	0.33	30.68	0.000*
Amplitude (mV)	3.76	1.03	3.62	1.09	5.76	0.57	49.79	0.000*
CV	30.65	5.68	36.43	9.83	52.4	4.67	75.72	0.000*
Right peroneal nerve								
Latency (ms)	7.44	0.98	6.34	0.81	4.58	0.85	38.073	0.000
Amplitude (mV)	1.12	0,83	0.97	0.67	2.88	0.62	61.335	0.000
CV (m/s)	24.85	8.4	32.37	13.29	48.19	9.02	38.915	0.000
Left peroneal nerve								
Latency (ms)	7.44	0.97	6.34	1.8	4.61	0.87	36.86	0.000*
Amplitude (mV)	1.12	0.83	0.97	0.77	11.39	46.77	1.466	< 0.236
CV (m/s)	24.85	8.38	32.37	13.29	49.61	3.86	55.38	0.000*

CV, conduction velocity. *Significant.

Table 3 Post-hoc test for comparison among studied groups regarding motor nerve neurophysiological studies

		Contr	Control (I)-group 1 (J)	(5)			Control	Control (I)-group 2 (J)	(1)			Group	Group 1 (I)-group 2 (J)	(5)	
				95% confidence interval	nfidence val				95% confidence interval	nfidence rval				95% confidence interval	idence /al
Variables	Mean difference	SE	Significance	Lower	Upper	Mean difference (I–J)	SE	Significance	Lower	Upper	Mean difference (I⊸J)	SE	Significance	Lower	Upper
Amplitude	Amplitude of peroneal (mV)	mV)													
Right	1.7620*	0.19217	0.000	1.3038	2.2202	1.9150*	0.19217	0.000	1.4568	2.3732	0.1530	0.19217	90.70	-0.3052-	0.6112
Terminal Is	Terminal latency of peroneal (ms)	oneal (ms)													
Right	-2.8573*	0.33049	0.000	-3.6454	-2.0693	_1.7670 [*]	0.33049	0.000	-2.5550	-0.9790	1.0903	0.33049	0.004	0.3023	1.8784
Left	-2.8250^{*}	0.33184	0.000	-3.6163	-2.0337	-1.7347*	0.33184	0.000	-2.5259	-0.9434	1.0903	0.33184	0.004	0.2991	1.8816
Conduction	Conduction velocity of peroneal (m/s)	peroneal (m/	(s)												
Right	23.3397*	2.70067	0.000	16.9000	29.7794	15.8163*	2.70067	0.000	9.3766	22.2560	-7.5233*	2.70067	0.018	-13.9630	-1.0836
Left	24.7567*	2.41193	0.000	19.0055	30.5079	17.2333*	2.41193	0.000	11.4821	22.9845	-7.5233*	2.41193	0.007	-13.2745	-1.7721
Amplitude	Amplitude of tibial (mV)														
Right	1.9847*	0.24003	0.000	1.4123	2.5570	2.1167*	0.24003	0.000	1.5443	2.6890	0.1320	0.24003	0.847	-0.4403	0.7043
Left	1.9997	0.23938	0.000	1.4289	2.5705	2.1317*	.23938	0.000	1.5609	2.7025	0.1320	0.23938	0.846	-0.4388	0.7028
Terminal Is	Terminal latency of tibial (ms)	(sm) ի													
Right	-1.4422*	0.18346	0.000	-1.8797	-1.0048	_0.7967	0.18346	0.000	-1.2341	-0.3592	0.6456^*	0.18346	0.002	0.2081	1.0830
Left	-1.4370*	0.18374	0.000	-1.8751	-0.9989	-0.7914*	0.18374	0.000	-1.2296	-0.3533	0.6456*	0.18374	0.002	0.2074	1.0837
Conduction	Conduction velocity of tibial (m/s)	ibial (m/s)													
Right	21.7370*	1.83533	0.000	17.3607	26.1133	15.9233*	1.83533	0.000	11.5470	20.2996	-5.8137*	1.83533	900.0	-10.1900	-1.4374
Left	21.7503*	1.83096	0.000	17.3844	26.1162	15.9700*	1.83096	0.000	11.6041	20.3359	-5.7803*	1.83096	900.0	-10.1462	-1.4144
Amplitude	Amplitude of median (mv)	(vr													
Right	2.1153*	.24369	0.000	1.5343	2.6964	2.3017*	0.24369	0.000	1.7206	2.8827	0.1863	0.24369	0.726	-0.3947	0.7674
Left	2.1687*	0.24546	0.000	1.5834	2.7539	2.3550*	0.24546	0.000	1.7697	2.9403	0.1863	0.24546	0.729	-0.3989	0.7716
Terminal Is	Terminal latency of median (ms)	dian (ms)													
Right	-2.0627*	0.22884	0.000	-2.6083	-1.5170	-1.2750 [*]	0.22884	0.000	-1.8207	-0.7293	0.7877	0.22884	0.003	0.2420	1.3333
Left	-2.0627*	0.22884	0.000	-2.6083	-1.5170	_1.2750 [*]	0.22884	0.000	-1.8207	-0.7293	0.7877	0.22884	0.003	0.2420	1.3333
Conduction	Conduction velocity of median (m/s)	nedian (m/s	_												
Right	26.8360	2.33707	0.000	21.2633	32.4087	19.1793*	2.33707	0.000	13.6066	24.7520	-7.6567*	2.33707	0.004	-13.2294	-2.0840
Left	26.8360*	2.33707	0.000	21.2633	32.4087	19.1793*	2.33707	0.000	13.6066	24.7520	-7.6567*	2.33707	0.004	-13.2294	-2.0840

Based on observed means. The error term is mean square (error)=0.489. *The mean difference is significant at the 0.05 level.

Table 4 Comparison among studied groups regarding sensory nerve neurophysiological studies

	Grou	ıp 1	Grou	лр 2	Cor	trol	F	Р
	Mean	SD	Mean	SD	Mean	SD		
Right median sensory	,				,			
Latency (ms)	4.69	0.61	4.04	1.2	2.87	0.22	52.263	0.000*
Amplitude (μv)	13.31	7.73	11.73	7.24	21.97	3.26	22.308	0.000^{*}
Left median sensory								
Latency (ms)	4.69	0.62	4.05	1.02	2.87	0.21	52.661	0.000*
Amplitude (μv)	13.25	7.62	11.70	7.25	21.99	3.17	22.948	0.000*
Right sural nerve								
Latency (ms)	5.65	0.42	5.05	0.99	3.5	0.63	70.186	0.000*
Amplitude (μv)	3.7	1.53	3.54	2.1	8.4	2.25	57.415	0.000*
Left sural nerve								
Latency (ms)	5.66	0.43	5.04	1	3.47	0.61	73.193	0.000*
Amplitude (μv)	4.39	3.70	3.55	2.1	8.4	2.44	21.287	0.000*

^{*}Significant.

there was a positive correlation between LDL and each of HbA1c, fasting blood glucose, and postprandial blood glucose (Table 6).

There were positive correlations between each of cholesterol, TG, and LDL with motor latency and correlated negatively with each of motor amplitude and CV in all studied nerves. Instead, HDL was negatively correlated with latency and positively correlated with each of amplitude and CV of all studied nerves (Table 7).

Each of the cholesterol, TG, and LDL were positively correlated with sensory latency and correlated negatively with sensory amplitude in all studied nerves. On the contrary, HDL was negatively correlated with latency and positively correlated with amplitude of all studied nerves (Table 8).

There was a statistically significant positive correlation between disease severity and mixed axonal demyelinating polyneuropathy (Table 9). Regarding the severity of neuropathy, there was a statistically significant positive correlation between disease severity and the dyslipidemia (Table 10).

Discussion

In the present study, hypertension was reported in 17 (28.3%) patients and smoking was reported in 12 (20.0%) patients. There was a significant increase of hypertension and smoking in patients when compared with the control group. However, the difference regarding age and sex was statistically nonsignificant. These results are comparable to those reported by Tesfaye *et al.* [14]; they reported that vascular risk factors have been identified as potential neuropathy risk factors in diabetic and nondiabetic populations.

The EURODIAB study followed 1172 patients with diabetes and found that incident neuropathy risk was increased by both glycemic control and other vascular risk factors including hypertriglyceridemia, hypertension, obesity, and tobacco use. In addition, Anari *et al.* [15] reported that approximately half of the participants had hypertension.

In the present study, the motor conduction study of median, tibial, and peroneal nerves in the patient group showed prolonged terminal latency and reduced amplitude of CMAP and CV when compared with control group. In addition, the sensory conduction study of the median and sural nerves in the patient group showed prolonged terminal latency and reduced amplitude of sensory nerve action potential when compared with the control group. These results are comparable to those reported by De Souza et al. [16]; they reported that their study demonstrates that DPN is characterized by prolonged distal and proximal CMAP latencies in the median and peroneal nerves, with slowed motor nerve conduction velocity (NCV). Distal and proximal motor amplitudes were lowered in the lower limb but not in upper limb nerves when compared with normal, and even presymptomatic diabetics had a highly significant slowing of motor NCV. Motor latencies were prolonged with further slowing of NCV in the symptomatic group, and a reduction of CMAP amplitudes compared with the asymptomatic group.

In the present work, there was a statistically significant increase of cholesterol, TGs, and LDL and a significant decrease of HDL in cases when compared with controls, and there was a statistically significant increase of cholesterol, TGs, and LDL in study group 1 when compared with group 3. On the contrary, there was a statistically significant decrease in HDL in group 1 when

Table 5 Post-hoc test for comparison among studied groups regarding sensory nerve neurophysiological studies

			,			,		,							
		Cont	Control (I)-group 1 (J)	(ا)			Control	Control (I)-group 2 (J)				Group 1	Group 1 (I)-group 2 (J)	((
				95% co	95% confidence Interval				95% confidence Interval	fidence val				95% confidence Interval	idence /al
Variable	Mean difference	SE	Significance	Lower	Upper bound	Mean difference (I–J)	SE	Significance	Lower	Upper bound	Mean difference (I⊸J)	SE	Significance	Lower	Upper
Amplitude	Amplitude of sural (μv)														
Right	4.6630	0.51333	0.000	3.4390	5.8870	4.8587*	0.51333	0.000	3.6346	6.0827	0.1957	0.51333	0.923	-1.0284	1.4197
Left	3.6497*	0.73177	0.000	1.9048	5.3946	4.4910*	0.73177	0.000	2.7461	6.2359	0.8413	0.73177	0.486	-0.9036	2.5862
Terminal	Terminal latency of sural (ms)	ral (ms)													
Right	Right -2.1440* 0.18666	0.18666	0.000	-2.5891	-1.6989	-1.6989 -1.5417*	0.18666	0.000	-1.9868	-1.0966	0.6023*	0.18666	0.005	0.1572	1.0474
Left	-2.1840 [*] 0.18607	0.18607	0.000	-2.6277	-1.7403	-1.5650*	0.18607	0.000	-2.0087	-1.1213	0.6190*	0.18607	0.004	0.1753	1.0627
Amplitude	Amplitude of median (μv)	hv)													
Right	8.6627*	1.65172	0.000	4.7242	12.6012 10.2483	10.2483*	1.65172	0.000	6.3098	14.1868	1.5857	1.65172	0.604	-2.3528	5.5242
Left	8.7407*	1.63785	0.000	4.8352	12.6461	10.2897*	1.63785	0.000	6.3842	14.1951	1.5490	1.63785	0.613	-2.3564	5.4544
Terminal	Terminal latency of median (ms)	edian (ms)													
Right	Right -1.8193*	0.18056	0.000	-2.2499	-1.3888	-1.1807*	0.18056	0.000	-1.6112	-0.7501	0.6387*	0.18056	0.002	0.2081	1.0692
Left	-1.8277*	0.18064	0.000	-2.2584	-1.3969	-1.1827*	0.18064	0.000	-1.6134	-0.7519	0.6450^{*}	0.18064	0.002	0.2143	1.0757
Based on	observed me	ans. The er	Based on observed means. The error term is mean square (error)=0.489. *The	ean square	(error)=0.48		rence is si	mean difference is significant at the 0.05 level	0.05 level.						

Table 6 Correlation between lipid profile and laboratory investigations

	Cholesterol	Triglycerides	HDL	LDL
Glycated hemoglobin	-0.113	-0.007	-0.372**	0.288**
Fasting blood glucose	-0.105	-0.033	-0.355**	0.298**
Postprandial blood glucose	-0.050	0.044	-0.406**	0.299**

HDL, high-density lipoprotein; LDL, low-density lipoprotein. **Highly significant.

Table 7 Correlation between lipid profile and motor nerve conduction

	Cholesterol	Triglycerides	HDL	LDL
Right median	nerve			
Latency	0.318**	0.411**	-0.536**	0.402**
Amplitude	-0.018	-0.176	0.174	-0.076
CV	-0.214 [*]	-0.354**	0.471**	-0.358**
Left median n	erve			
Latency	0.209*	0.245**	-0.212 [*]	0.080
Amplitude	-0.056	-0.196 [*]	0.197*	-0.102
CV	-0.225 [*]	-0.360**	0.486**	-0.357**
Right tibial ne	erve			
Latency	0.208*	0.324**	-0.474**	0.319**
Amplitude	-0.178	-0.306**	0.335**	-0.187 [*]
CV	-0.360**	-0.356**	0.427**	-0.358**
Left tibial ner	ve			
Latency	0.424**	0.556**	-0.545**	0.339**
Amplitude	-0.234 [*]	-0.306 ^{**}	0.252**	-0.155
CV	-0.301**	-0.313 ^{**}	0.421**	-0.274**
Right peronea	al nerve			
Latency	0.053	0.137	-0.324**	0.231*
Amplitude	-0.158	-0.229 [*]	0.321**	-0.135
CV	-0.050	-0.144	0.378**	-0.278**
Left peroneal	nerve			
Latency	0.086	0.168	-0.367**	0.230*
Amplitude	-0.284**	-0.244**	0.362**	-0.263**
CV	0.042	-0.078	0.344**	-0.227 [*]

CV, conduction velocity; HDL, high-density lipoprotein; LDL, lowdensity lipoprotein. *Significant. **Highly significant.

Table 8 Correlation between lipid profile and sensory nerve conduction

	Cholesterol	Triglycerides	HDL	LDL
Right median	nerve			
Latency	0.39*	0.38*	-0.31 [*]	0.20
Amplitude	-0.60**	-0.48**	0.30*	-0.25 [*]
Left median n	erve			
Latency	0.51**	0.49**	-0.41 [*]	0.24*
Amplitude	-0.65 ^{**}	-0.65**	0.40*	-0.27 [*]
Right sural ne	rve			
Latency	0.47**	0.51**	-0.39^{*}	0.21
Amplitude	-0.61 ^{**}	-0.60**	0.34*	-0.27 [*]
Left sural nerv	/e			
Latency	0.43**	0.47**	-0.41**	0.26
Amplitude	-0.61 ^{**}	-0.65**	0.30*	-0.26 [*]

HDL, high-density lipoprotein; LDL, low-density lipoprotein. *Significant. **Highly significant.

Table 9 Correlation between type of disease severity and type of neuropathy

		Severity			Stati	stics
	Mild	Moderate	Severe	Total	r	Р
Type of neuropathy						
Axonal NO (% of severity)	5 (71.4)	6 (17.6)	1 (5.3)	12 (20)	0.307●	0.010
Demyelinating [n (% of severity)]	2 (28.6)	7 (20.6)	6 (31.6)	15 (25)		
Mixed [n (% of severity)]	0	21 (61.8)	12 (63.2)	33 (55.0)		
Total [n (% of severity)]	7 (100.)	34 (100.0)	19 (100)	60 (12)		

Table 10 Correlation between type of disease severity and laboratory findings

		Severity [n (%)]			Stati	stics
	Mild	Moderate	Severe	Total	r	Р
Group 1	2 (28.6)	14 (41.2)	14 (73.7)	30 (50.0)	0.314 [*]	0.012
Group 2	5 (71.4)	20 (58.8)	5 (26.3)	30 (50.0)		
Total	7 (100.0)	7 (100.0)	34 (100.0)	19 (100.0)		

^{*}Significant.

compared with group 3. Besides, cholesterol and TGs were significantly increased in groups 1 (DM with hyperlipidemia) and 2 when compared with group 3. Moreover, there was a statistically significant increase in abnormal LDL and HDL in group 1 when compared with groups 2 and 3. The study conducted by Goel et al. [17] in India on patients with type 2 DM reported that the rate of dyslipidemia was 83%. This percentage reflected the association between diabetes and hyperlipidemia. In addition, results of the present work are comparable to the previous study reporting that type 2 DM is commonly associated with lipid abnormalities such as low plasma HDL cholesterol, high TG and a shift toward smaller and denser LDL particle. Furthermore, clinical evidence suggests that dyslipidemia is associated with the development and progression of DPN [18].

In DM, lipid abnormalities are more widespread because major key enzymes and lipid metabolism pathways are affected owing to the insufficiency of insulin production and secretion [19]. High TGs, low HDL cholesterol, and increased LDL cholesterol are the representative feature of diabetic dyslipidemia [20]. Comparable findings are found in the present work.

In the present work, patients with diabetes and diabetes with dyslipidemia had significantly higher values of HbA1c when compared with the control group. In addition, values of HbA1c were higher in diabetic patients with dyslipidemia when compared with those without dyslipidemia, and this reflects a possible role of dyslipidemia on HbA1c. These results agree with those reported by Sheth *et al.* [21], who reported that patients with dyslipidemia alone or combined with obesity in type 2 DM group

have shown poorly controlled HbA1c as compared with those with the normal level of these parameters. Several reports have shown significant influence of lipid concentration on hemoglobin glycation and increased cardiovascular disorder risk, possibly owing to increased insulin resistance [22,23]. Hyperglycemia encourages an increase in LDL glycation and affinity toward LDL receptors on macrophages, which stimulates foam cell formation, endothelial cell toxicity, and smooth muscle proliferation responsible for coronary artery and macrovascular complications [24]. These studies indicated that there is a reciprocal relation (effect) between dyslipidemia and diabetes.

In the present work, we observed a significant association of HDL cholesterol with HbA1c which is in accordance with a study conducted on Nepalese patients with type 2 DM. Moreover, increased dyslipidemia is likely to increase HbA1c and vice versa as the correlation between these parameters are directly proportional and goes hand-in-hand [25]. Reduction in HbA1c in type 2 DM is associated with improved insulin sensitivity and better lipid parameters [21].

In the present work, we found that neurophysiological studies were deranged in patients with DPN when compared with their corresponding controls. These data reflected the association between NCS abnormalities and the development of DPN. Moreover, patients who had dyslipidemia with DPN had more significant abnormalities in NCSs, which were confirmed by a significant correlation between different values of lipid profile and neurophysiological studies. In their study, Asad *et al.* [26] found that

patients with DPN had significant changes in latency, amplitude, and CV when compared with normal controls. These results are comparable to the present work. In addition, they added that both clinical tests and NCS have a value in detecting cases of peripheral neuropathy. The NCS, however, is more powerful in detecting neuropathy, which shows that NCS is helpful also in detecting subclinical neuropathies.

Results of the present study were also in agreement with Song et al. [27]; their findings signified that lipid profile was significantly and independently associated with DPN when controlling for confounding factors including age, BMI, glucose profiles, and medical history. They added, in the different indices of lipid profiles, higher levels of the sum of TGs and total cholesterol, as well as TGs and LDL were positively related to the severity of DPN.

Besides, the results of the present work agreed with Yadav et al. [28], who reported that the results observed in their study clearly demonstrate the existence of disturbances in lipid metabolism in patients with type 2 DM with peripheral neuropathy.

Conclusion

The results of the present work revealed that the dyslipidemia was added to the hazardous effect of diabetic peripheral neuropathy on neurophysiological studies. Besides, there was a significant correlation between lipid profile and changes in nerve conduction studies. Thus, it is advisable to consider lipid screening in patients with diabetic peripheral neuropathy and the addition of lipid-lowering drugs in those with hyperlipidemia.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- 1 Shakher J. Stevens ME. Update on management of diabetic polyneuropathies. Diabetes Metab Syndr Obes 2011; 4:289-305.
- 2 Kwai NCG, Nigole W, Poynten AM, Brown C, Krishnan AV. The relationship between dyslipidemia and acute axonal function in type 2 diabetes mellitus in vivo. PLoS ONE 2016; 11:1-12.
- 3 Steiner G. How can we improve the management of vascular risk in type 2 diabetes: insights from FIELD? Cardiovasc Drugs Ther 2009; 23:403-408.
- 4 Khawaja N, Abu-Shennar J, Saleh M, Dahbour SS, Khader YS, Ajlouni KM. The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus; the case of Jordan. Diabetol Metab Syndr 2018; 10:8.

- 5 Perez-Matos MC, Morales-Alvarez MC, Mendivil CO. Lipids: a suitable therapeutic target in diabetic neuropathy? J Diabetes Res 2017; 2017:6943851.
- 6 Swiger KJ, Martin SS. PCSK9 inhibitors and neurocognitive adverse events: exploring the FDA directive and a proposal for N-of-1 trials. Drug Saf 2015; 38:519-526.
- 7 Novak P, Pimentel DA, Sundar B, Moonis M, Qin L, Novak V. Association of statins with sensory and autonomic ganglionopathy. Front Aging Neurosci 2015; 7:191.
- 8 Hermans MP, Ahn SA, Rousseau MF. The mixed benefit of low lipoprotein (a) in type 2 diabetes. Lipids Health Dis 2017; 16:171.
- 9 Hanewinckel R, van Oijen M, Ikram MA, van Doorn PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol 2016; 31:5-20.
- 10 Sandeep S, Gokulakrishnan K, Deepa M. Insulin resistance is associated with increased cardiovascular risk in Asian Indians with normal glucose tolerance e the Chennai Urban Rural Epidemiology Study (CURES-66). J Assoc Physicians India 2011; 59:480-484.
- 11 Stone NJ, Robinson JG, Lichtenstein AH, Merz NB, Eckel RH, Goldberg AC, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25 Part B):2889-2934.
- 12 Meijer JW, Smit AJ, Sonderen EV, Groothoff JW, Eisma WH, Links TP. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: The Diabetic Neuropathy Symptom score. Diabetic Med 2002; 19:962-965.
- 13 Wisotzky E, Tseng V, Pohlman D. Nerve conduction studies. In: Wisotzky E, Tseng V, Pohlman D, Barry B editors. Pocket EMG. 1st ed. New York: Demos Medical Publishing; 2015. 2-50.
- 14 Tesfaye S, Boulton AJ, Dyck PJ, Kempler P. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33:2285-2293.
- 15 Anari R, Amani R, Latifi SM, Veissi M. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr 2017; 11:37-41.
- 16 De Souza RJ, de Souza A, Nagvekar MD. Nerve conduction studies in diabetics presymptomatic and symptomatic for diabetic polyneuropathy. J Diabetes Complications 2015; 29:811-817.
- 17 Goel S, Garg PK, Malhotra V. Dyslipidemia in type II diabetes mellitus-an assessment of the main lipoprotein abnormalities. BJMS 2016;
- 18 Wiggin TD, Sullivan KA, Pop-Busui R, Feldman EL. Elevated triglycerides correlate with progression of diabetic neuropathy severity score. Diabetes 2009: 58:1634-1640
- 19 Taskinen MR. Diabetic dyslipidemia. Atheroscler Suppl. 2002; 3:47-51.
- 20 Sarfraz M, Sajid S, Ashraf MA. Prevalence and pattern of dyslipidemia in hyperglycemic patients and its associated factors among Pakistani population. Saudi J Biol Sci 2016; 23:761-766.
- 21 Sheth J, Shah A, Sheth F, Trivedi S. The association of dyslipidemia and obesity with glycated hemoglobin. Clin Diabetes Endocrinol 2015; 1:6.
- 22 Charitha B, Senghor AR, Shivashekar M, William E. Glycated hemoglobin as a dual marker: in control of glycemic status and diabetic dyslipidemia. IJPCR 2013; 5:111-113.
- 23 Hammed I, Abed B, Rashid N. Glycated haemoglobin as a dual biomarker association between HbA1c and dyslipidemia in type 2 diabetic patients. J Fac Med Bagdad 2012: 54:88-92
- 24 Singh AK, Singh SK, Singh N, Agrawal N, Gopal K. Obesity and dyslipidemia. Int J Biol Med Res 2011; 2:824-828.
- VinodMahato R, Gyawali P, Raut PP, Regmi P, Singh KP, Pandeya DR, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: glycated hemoglobin as a dual biomarker. Biomed Res 2011; 22:375-380.
- 26 Asad A, Hameed MA, Khan UA. Comparison of nerve conduction studies with diabetic neuropathy symptom score and diabetic neuropathy examination score in type-2 diabetics for detection of Sensorimotor Polyneuropathy. J Pak Med Assoc 2009; 59:594-598.
- Song L, Zhou L, Tang Z. An association analysis of lipid profile and diabetic cardiovascular autonomic neuropathy in a Chinese sample. Lipids Health Dis 2016; 15:122.
- 28 Yadav N, Shete AN, Khan ST. Effect of hyperlipidemia on nerve conduction velocity in type II diabetes mellitus. JDMS 2014; 13:7-9.