COMPARISON OF HYPOTENSIVE AND HYPOLIPIDEMIC EFFECTS OF CATHARANTHUS ROSEUS LEAVES EXTRACT WITH ATENOLOL ON ADRENALINE INDUCED HYPERTENSIVE RATS

NAZNIN ARA, MAMUNUR RASHID AND MD SHAH AMRAN*

Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
*Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh

ABSTRACT

The leaves extract of Catharanthus roseus was investigated for hypotensive and hypolipidemic effects in adrenaline-induced hypertensive rats (AIHR) and compared with those of Atenolol in a crossover design. The pharmacologically Active components responsible for hypotensive activities were isolated from plant using bioassay guided purification approach and the structure of the compounds was proposed by spectroscopic methods. Catharanthus roseus leaves extract and commercial drug Atenolol were administered through intraperitoneal (i.p) route for one week. Different biochemical parameters such as heart weight, blood glucose level, serum cholesterol level, serum triglyceride level, body weight and the relationships between them were measured. Catharanthus roseus leaves extract at a dose of 30 mg/155±15 gm of body weight was injected in rat at every morning during the treatment period. The dose of Atenolol was determined according to its pharmacokinetic parameters. Clinically effective plasma concentration as a hypotensive drug was obtained after the injection of 0.1 mg/155±15 gm of body weight of the drug. The Catharanthus roseus leaves extract made significant changes in each cardiovascular parameter after investigation. Catharanthus roseus leaves extract treated animals have shown the hypotensive effects. Hypotensive effects were also shown by Atenolol.

Keywords: Hypertension, antihypertensive, catharanthus roseus, atenolol, adrenaline.

INTRODUCTION

Hypertension is a medical word for high blood pressure (BP). Blood carries nutrients and oxygen to our body and picks up waste like carbon dioxide (Amran et al., 2004). The heart pumps blood through arteries and blood returns to the heart through veins. Blood pressure is the “push” of blood against the walls of the arteries. But if the blood is being pushed too hard against the walls of the vessels, they might be damaged (Antia and Okokon, 2005). High blood pressure is the long term and persistent increase in blood pressure above the normal range, defined as a systolic blood pressure at or above 140 (mmHg) or a diastolic blood pressure at or above 90 mm Hg. The condition of “high blood pressure” is also known as hypertensive disease (Siddiqui and Khan, 1968). Hypertension may be divided into two groups- (a) Primary or essential hypertension where the definite cause for the rise in blood pressure is not known. Although the cause of essential hypertension is mainly three types-genetic factor, stress condition and intake of excess Na+ salt; (b) Secondary hypertension that are usually considered as drug induced and disease induced. Atenolol is a beta,-selective (cardio selective) beta-adrenergic receptor blocking agent without membrane stabilizing or intrinsic sympathomimetic (partial agonist) activities beta-adrenoreceptor blocking activity of Atenolol has been demonstrated by Reduction in resting and exercise heart rates and cardiac output, Reduction of systolic and diastolic blood pressure at rest and on exercise, Inhibition of isoproterenol induced tachycardia and Reduction in reflex orthostatic tachycardia (Antia and Okokon, 2005; Siddiqui and Khan, 1968).

Catharanthus roseus is locally known as nayantara, belongs to the family Apocynaceae. The plant is indigenous to Madagascar but now found in tropical regions and cultivated as an ornamental plant in southern Florida, Africa, India, Thailand, Taiwan, Eastern Europe and Australia. Catharanthus is an erect ever blooming pubescent herb or sub herb, 40-80 cm high, woody at the bases. Madagascar periwinkle’s most potent constituent is the reserpine. Reserpine is recommended for the treatment of hypertension, mild anxiety states and chronic psychoses (Siddiqui and Khan, 1968; Kirtikar and Basu, 1984). It works by decreasing heart rate and relaxing the blood vessels so that blood can flow more easily through the vessels. In severe hypertension, reserpine may be used together with more potent hypertensive drugs where reserpine enhances the reaction to bring about the desired relief within a short time. Reserpine has a calming effect in chronic psychoses involving anxiety, psychomotor hyperactivity or aggressive behavior. Reserpine’s antihypertensive effects can last for weeks following

*Corresponding author: e-mal: amdshah@yahoo.com
Comparison of hypotensive and hypolipidemic effects of Catharanthus roseus leaves

discontinuance of therapy (Srinivas et al., 2003). Leaves of Catharanthus roseus possess hypotensive properties. Catharanthus roseus also used as a cerebral vasodilator.

MATERIALS AND METHODS

Plant materials
Fresh leaves of the plant was collected from the botanical garden of our University and authenticated by the herbarium of Department of Botany, University of Rajshahi, Rajshahi, Bangladesh.

Preparation of the plant sample
The fresh leaves were collected, sun dried and oven dried at controlled temperature and then grind. The coarse powder was then stored and extracted in ethanol.

Animal model
Albino rats were purchased from International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh. Rats were allowed free access to distilled water. A cycle of light and dark (12 hours light and 12 hours dark) and a temperature of 24±2°C were maintained in the room. At first rats were anesthetized with diethyl ether and 100 µl of adrenaline was injected into rats by intraperitoneal (i.p.) injection using a 1 ml disposable syringe for consecutive five days to induce hypertension. To confirm the induction of hypertension, the serum cholesterol level, serum triglyceride level and blood glucose levels were measured and compared with that of control rats that received only normal saline. The animals used in this study were cared for in accordance with the guidelines for the animal experiment of our University.

Preparation of dose of the plant extract
Catharanthus roseus leaves extract was given as 200-mg/kg-body weight of rats. The average body weight of hypertensive rats was measured 155±15 gm. Thus the daily single dose of Catharanthus roseus leaves extract was 30 mg/155±15 gm body weight of rats.

Dose preparation of antihypertensive drug
The daily dose of Atenolol for human is 50 mg/70 kg. The average body weight of hypertensive rats was measured 155±15 gm. So, the daily single dose of Atenolol was 0.1 mg/155±15 gm body weight of rats.

Experimental treatment of rats
The animals were randomly divided into four groups. Group I was consisted of control rats which received normal saline, group II was consisted of adrenaline induced hypertensive rats (AIHR), group III was consisted Catharanthus roseus leaves extract treated adrenaline induced hypertensive rats and group IV was consisted of Atenolol treated adrenaline induced hypertensive rats to compare pharmacological activities. Catharanthus roseus leaves extract and commercial drug Atenolol were administered through intraperitoneal (i.p) route for one week at their respective doses in every morning till the completion of investigation.

Description and measurement of different parameters
Before treatment different biochemical parameters such as heart weight, serum triglyceride level (STL), serum cholesterol level (SCL), blood glucose level (BGL) and body weight of group I and group II rats were measured. The rats were sacrificed to collect blood sample and heart from each rat and investigated. Collected blood samples were analyzed for the determination of blood glucose level by using BioLand G-423 glucose test meter (BioLand, Germany). Then the data were compared with the standard value. Collected blood samples about 1-2 ml was centrifuged at 4000 rpm for 10 minutes to separate the serum to determine STL, SCL by measuring absorbance using UV spectrophotometer (Shimizu UV-1200, Tokyo, Japan), using wet reagent diagnostic kits (Boehringer Mannheim, GmbH) according to manufacturer’s protocol.

Drugs and chemicals
Phosphate buffer, Sodium buffer, Potassium dihydrogen phosphate, Ether (Diethyl ether), 0.1N HCl, Acetone, Ethanol. Atenolol was a kind gift from the Square Pharmaceuticals Ltd., Bangladesh.

Statistical analysis
In the whole animal study each group consisted of six animals. Data were expressed as mean±SEM. Differences in mean values between experimental groups were analyzed by unpaired t test. A probability value of 0.05 (p <0.05) was considered to be significant.

RESULTS AND DISCUSSION

The effects of leaves extract of Catharanthus roseus with Atenolol on heart weight, STL, SCL, BGL, and body weight were investigated in control and adrenaline induced hypertensive rats (AIHR).

Effect of Catharanthus roseus leaves extract and Atenolol on heart weight in adrenaline-induced hypertensive rats
The mean heart weight of control, adrenaline induced hypertensive and Catharanthus roseus leaves extract and Atenolol treated animals are shown in Figure 1. Hypotensive and hypolipidemic effect were observed in animals treated with Catharanthus roseus leaves extract and Atenolol. To determine whether or not there was a statistically significant difference achieved by the Catharanthus roseus leaves extract and Atenolol during treatment one-way ANOVA followed by DMCT was applied and compared with the AIHR. A significant reduction in heart weight of Cath-treated and Ate-treated animals were observed.
Effect of Catharanthus roseus and Atenolol on total serum triglyceride and serum cholesterol in adrenaline-induced hypertensive rats

The mean serum total cholesterol and triglyceride levels of control, adrenaline induced hypertensive and extract of *Catharanthus roseus* leaves extract and Atenolol treated animals are shown in Figure 3. Hypotensive and hypolipidemic effect were observed in animals treated with *Catharanthus roseus* leaves extract and Atenolol. Significant decreases in serum triglyceride and serum cholesterol level were observed in animals treated with *Catharanthus roseus* leaves extract and Atenolol. To determine whether or not there was a statistically significant difference achieved by *Catharanthus roseus* leaves extract and Atenolol during treatment one-way ANOVA followed by DMCT was applied and compared with the AIHR. A significant reduction in serum triglyceride level of the leaves extracts of Cath-treated and Ate-treated animals were observed.

Effect of Catharanthus roseus leaves extract and Atenolol on blood-glucose level in adrenaline-induced hypertensive rats

The mean blood glucose level of control, adrenaline induced hypertensive and *Catharanthus roseus* leaves extract and Atenolol treated animals are shown in Figure 2. A significant decrease in blood glucose level was observed in animals treated with *Catharanthus roseus* leaves extract and Atenolol. To determine whether or not there was a statistically significant difference achieved by the *Catharanthus roseus* leaves extract and Atenolol during treatment one-way ANOVA followed by DMCT was applied and compared with the AIHR. A significant reduction in blood glucose level of leaves extract of Cath-treated and Ate-treated animals were observed.

Effect of Catharanthus roseus leaves extract and Atenolol on body weight in adrenaline-induced hypertensive rats

The mean body weight of extract of *Catharanthus roseus* leaves extract and Atenolol treated animals (after intraperitoneal administration of a single dose) are shown in Figure 4. Hypotensive and hypolipidemic effect were observed in animals treated with *Catharanthus roseus* leaves extract and Atenolol. A significant decrease in body weight was observed in animals treated with leaves extract of *Catharanthus roseus* and Atenolol. To determine whether or not there was a statistically significant difference achieved by the extract and drug during treatment one-way ANOVA followed by DMCT was applied and compared with the AIHR. A significant...
In each case).

earlier observation (Boesen et al., 1984; Momin, 1987). Standard values of different biochemical parameters were investigated. Except serum triglyceride level, the standard values of body weight, heart weight, blood glucose level and serum cholesterol level were high in adrenaline induced hypertensive rats when compared to control rats. Because of metabolic effects of adrenaline, serum triglyceride level was low in hypertensive rats (Gillman et al., 1990; Boesen et al., 2005). This study was performed to analyze the differential effects of *Catharanthus roseus* leaves extract and Atenolol on heart weight, blood glucose level, serum triglyceride level, serum cholesterol level and body weight of hypertensive rats, and compared with those of control rats. The present study revealed that *Catharanthus roseus* leaves extract has got profound hypotensive and lipid lowering activity and this study has similarity with previous investigation (Amran et al., 2004; Yuki et al., 2002; Boesen et al., 2005). The mechanism by which *Catharanthus roseus* leaves extract lowers blood pressure is not yet fully established. However, the hypotensive action may be due to the stimulation of the muscarinic receptors of the parasympathetic nerve by the compounds or to their action as an antagonist of β-adrenergic receptors but it may act as a Ca++ channel blocker (Amran et al., 2004, Bangladesh National Formulary, 2001).

From these overall results, we can conclude that the *Catharanthus roseus* leaves extract possess hypotensive and lipid lowering effects. The intake of *Catharanthus roseus* leaves extract as medicine or as supplement to diet might have potential benefit in the treatment of hypertension.

REFERENCES

