Cloning and characterization of cbhII gene from Trichoderma parceramosum and its expression in Pichia pastoris

Saber Zahri, Mohammad Reza Zamani*, Mostafa Motallebi, Mehdi Sadeghi

National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, I.R. Iran

Abstract
The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame coding for a protein of 470 amino acids. The deduced amino acid sequence includes a putative signal peptide, cellulose binding domain, linker region, and catalytic domain. Homology between this sequence and other reported Trichoderma CBHII proteins and also structural prediction of this enzyme are discussed. The coding sequence of cbhII gene was cloned in pPIC9 expression vector and expressed in Pichia pastoris GS115. The expression was confirmed by Northern dot blot, RT-PCR and enzyme activity staining.

Keywords: Trichoderma parceramosum; Cellobio hydrolasell; Fungus; cDNA Sequence

INTRODUCTION

Much of the organic material on the surface of the earth is stored in the form of cellulose. Cellulose is a simple, linear polymer built up from glycosyl units connected by β(1-4) linkages. These linear chains can vary in length, and often consist of many thousands of units (Beguin and Aubert, 1994). Within the biosphere, there is an enormous of cellulose through large-scale production and degradation. Though chemically simple, cellulose is physically complex with both crystalline and amorphous regions, and a number of different enzymes are required for its efficient hydrolysis (Tomme et al., 1988). Cellulose is degraded in nature by the concerted action of several synergistically functioning enzymes. Depending on their mode of action, cellulolytic enzymes fall into one of two main groups, endoglucanase or cellobiohydrolase (Beguin and Aubert, 1994). The complete degradation of cellulose to glucose requires the action of at least three types of enzymes: endo-β-1,4 -glucanase, exo-β-1,4 -glucanase (cellobiohydrolase) and β-glucosidase (Beguin and Lemaire, 1996). The most abundant enzymes are two cellobiohydrlase, Cel7A and Cel6A, also called CBHII and CBH1, respectively. These are also the most efficient enzymes on highly crystalline cellulose (Koivula et al., 2002).

Sequence determination and functional studies have shown that most fungal cellulases have a bifunctional organization in which a catalytic core domain and a cellulose-binding domain are connected by a flexible glycoslated linker peptide (Van Tilbeurgh et al., 1986; Tomme et al., 1988). Unlike CBH1, CBHIII prefers to act on the cellulose chain from the nonreducing end (Nutt et al., 1998) and classified in the Cel6A family of the glycohydrolases (Henrissat et al., 1996).

The methylotrophic yeast Pichia pastoris has been developed as a widely used host organism for recombinant protein production (Cereghino and Cereg,
As a single cell microorganism, it grows rapidly on inexpensive substrates and are easily manipulated. As an eukaryote, it can often correctly fold and process other eukaryotic proteins. *P. pastoris* has several key advantages over other yeast expression systems (Higgens and Cregg, 1998). It has a tightly regulated and highly efficient methanol induced alcohol oxidase (AOX1) promoter. This promoter stimulates high levels of transcription in cells cultured on methanol but is strongly repressed in cells cultured on other carbon sources (Tschopp et al., 1987; Cregg et al., 1989). The other important advantage is the *P. pastoris* readily grows to unusually high-cell densities (130 g l⁻¹ dry cell weight) in continuous culture (Cregg and Madden, 1987). This is possible because *P. pastoris* strongly favors a respiratory mode of metabolism over a fermentative mode (Lin Cereghino et al., 2001, 2002). As a result, *P. pastoris* does not have a tendency to produce ethanol, an inhibitor of cell growth at high concentrations. Third advantage of *P. pastoris* for certain recombinant proteins are its capacity for secreting large amounts of these proteins into the culture medium. Since *P. pastoris* secretes only low levels of its own proteins, secretion provides an effective method to separate recombinant proteins from the bulk of intracellular host proteins and other cellular materials (Romanos, 1995). Finally, unlike the expression from plasmid, the heterologous genes of interest are stably integrated into *P. pastoris* genome via homologous recombination.

In this study, we have cloned and sequenced the cbhII gene (genomic DNA and cDNA) from a high producer cellulolytic enzymes isolate of *T. parceramosum* to characterize its gene structure for the first time. We described structural prediction of CBHII based on comparative protein modeling. We also report the heterologous expression of CBHII in active form by *P. pastoris*.

### MATERIALS AND METHODS

**Microorganism, plasmid vector, and culture conditions:** *Trichoderma parceramosum* (Seyed Asli et al., 2004) was identified in our laboratory. The stock culture was stored on agar (1.5%) slant of MY medium (2% malt extract, 0.2% yeast extract, 1% maltose).

For chromosomal DNA preparation, the spores were inoculated in the liquid MY medium and grown for 2 days at 30°C with shaking (100 rpm), and mycelia were harvested by filtration (Takashima et al., 1998). *Escherichia coli* DH5α as a host and pBluescript SK(+) (Stratagene, La Jolla, CA) as a vector used for routine cloning. *E. coli* were cultured in LB medium (1% trypton, 0.5% yeast extract, and 1% NaCl). *P. pastoris* GS115 (his4) and pPIC9 vector have been used for heterologous expression of CBHII (Invitrogen BV, Groningen, The Nederland).

*P. pastoris* GS115 was grown in YPD (1% yeast extract, 2% peptone, and 2% dextrose), YPG (1% yeast extract, 2% peptone, and 1% glycerol), YPM (1% yeast extract, 2% peptone, and 0.5% methanol), BMG (a buffered minimal glycerol consist of: 100 mM potassium phosphate, 1.34% YNB 4×10⁻⁵% biotin, and 1% glycerol), BMM (100 mM potassium phosphate, 1.34% YNB 4×10⁻⁵% biotin, and 0.5% methanol), BMGY (100 mM potassium phosphate, 1.34% YNB 4×10⁻⁵% biotin, 1% yeast extract and 1% glycerol) or BMMY (100 mM potassium phosphate, 1.34% YNB 410⁻⁵% biotin, 1% yeast extract and 0.5% methanol).

**Genomic DNA PCR amplification:** For amplification of cellobiohydrolase II (cbhII) gene from *T. parceramosom*, the two tailed primers, CF22 and CB22 (Table 1), were designed based on sequence similarity of existing cbhII genes present in the database. To facilitate subsequent cloning of the PCR-derived frag-

### Table 1. Oligonucleotides (primers) used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotides Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF22</td>
<td>5'-GGCGAAATGACATTTGTCGGGATTTCCTATCAACGAGAAGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>CB22</td>
<td>5'-GGCGGATTTACACGAGAAGACGUGTGGTTGTCG-3'</td>
</tr>
<tr>
<td>CP3</td>
<td>5'-CATTTGTTGATGATGACTATCACGACACCAACAGAAGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>CP4</td>
<td>5'-CTTCCGCGCGCGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>C2EF</td>
<td>5'-GGCGAAATCAGGTCGTCAGGTCAGGTCG-3'</td>
</tr>
<tr>
<td>C2EB</td>
<td>5'-CCCCTGGGGCGCGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>18sU</td>
<td>5'-GCTCAGGATGAGTAATGTAAACAGGACAGGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>18sR</td>
<td>5'-GCCAGAATGAGTAAAGGCGATTACAGAGAAGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>5' OX1</td>
<td>5'-GACATGATATGCTAGAGTAAACAGGACAGGATGUGGTTGTCG-3'</td>
</tr>
<tr>
<td>3' AOX1</td>
<td>5'-GCAAATTCGGATTTCCTATCAACGAGAAGATGUGGTTGTCG-3'</td>
</tr>
</tbody>
</table>
ments, EcoRI and BamHI restriction sites (bolded) were added to the 5’-end of CF22 and CB22 primers, respectively.

Fungal chromosomal DNA was prepared as described by Bao Sun et al. (2002). Amplification of the DNA fragments encoding T. parceramosum cbhII gene was performed using polymerase chain reaction (PCR). To identify and confirm the PCR products, two primers, CP3 and CP4 (Chen et al., 1987), were synthesized and used for nested PCR. PCR reactions contained 2.5 units of Pfu DNA polymerase (Fermentas), 1X buffer, 200 μM of each deoxynucleotide triphosphate, 2 μM MgSO₄ and 0.5 μM primers. Reaction conditions for PCR amplification were 94°C for 1 min, 54°C for 1 min, and 72°C for 1.5 min, for 30 cycles followed by a final extension of 10 min. PCR products were separated by electrophoresis on a 1% agarose gel and purified by High pure PCR product purification Kit (Roche). The purified fragments were cloned into pBluescript SK(+) vector.

RNA isolation and cDNA synthesis: RNA was isolated as described by Jain (2004). For RNA isolation from T. parceramosum, it was grown in 250 ml Shacked flasks at 28°C and 200 rpm in 50 ml medium which contained 0.14% (NH₄)₂SO₄, 0.2% KH₂PO₄, 0.03% CaCl₂·2H₂O, 0.03% MgSO₄·7H₂O, 0.1% Tween 80, and 1 ml/l trace elements solution, contained 2.5 units of DNA polymerase (Fermentas), 1X buffer, 200 μM of each deoxynucleotide triphosphate, 2 μM MgSO₄ and 0.5 μM primers. Reaction conditions for PCR amplification were 94°C for 1 min, 54°C for 1 min, and 72°C for 1.5 min, for 30 cycles followed by a final extension of 10 min. PCR products were separated by electrophoresis on a 1% agarose gel and purified by High pure PCR product purification Kit (Roche). The purified fragments were cloned into pBluescript SK(+).

General DNA procedures: Plasmid DNA preparation and electrophoresis of DNA fragments were performed by routine procedures (Sambrook and Russell, 2001). Enzymatic treatments of DNA molecules were carried out as recommended by manufacture (Fermentas). DNA fragment was recovered after electrophoresis on a 1% low melting temperature agarose gel and bacteria were transformed by the CaCl₂ method (Sambrook and Russell, 2001).

Construction of expression vector: Full length cDNA encoding the CBHII, without native signal sequence, was amplified with specific primers (C2EF and C2EB) using Pfu polymerase (Fermentas) and cloned into pPIC9 at NotI/EcoRI restriction sites and sequenced by a commercial service (Seqlab, Germani). The Saccharomyces cerevisiae α-factor secretion signal was used for the secretion of the recombinant enzyme. The construct was designated as pSZ5.

Transformation of P. pastoris and screening of recombinant colonies: P. pastoris strain GS115 was transformed by electroporation (BioRad-Gene PulserII) using 0.2 cm cuvettes (1.5 kv for 8 ms) with 20 μg DNA fragment of cbhII cassette. In pSZ5 the cbhII cassette is flanking by BgIII sites (Fig. 5). pSZ5 was digested by BgIII and the fragment containing cbhII gene was purified from the gel and used for electroporation. After electroporation, 1ml of ice-cold 1M sorbitol solution was added to the cuvettes, and the cuvette contents were transferred to 1.5 ml tube. After incubation at 30°C for 1h without shaking, cells were spread on minimal dextrose (MD) plates and incubated at 28°C for 2 days.

Before transformation, pSZ5 was linearized with BglII. CbhII gene is, flanked at its 5’ end by AOX1 promoter and at its 3’ end by the his 4 gene and the AOXI terminator sequence. The same cassette without an insert (cbhII gene) was also transformed into P. pastoris and used as a control.

His+ transformant colonies were picked from MD plates and transferred to minimal methanol (MM) plates. Colonies were spotted onto MM-Agar plates at 70°C for an additional 5 min. The cDNA from the reaction was kept at -70°C and used for a PCR reaction with specific primers. DNA amplification was carried out in a PCR reaction as described above.

The resulting 1.4-kb cDNA gene fragment was recovered and purified from a 1.2% (w/v) agarose gel using the High pure PCR product purification Kit and cloned into pBluescript SK(+) cloning vector.
supplemented with 0.5% Carboxy methyl cellulose (CMC) and incubated at 30°C for three days, followed by incubation at 45°C for 3h. The colonies were removed from surface of the media and were stained with 1% CongoRed. Cellulase producing transformants were identified by the presence of a faint colorless halo around the Pichia colonies on the plates, resulting from CBHII activity.

**Time-course studies of CBHII expression:** A subculture of transformed *P. pastoris* desired clone was grown overnight in YPD medium (10 ml) in a 100 ml flask and 0.5 ml of this subculture was used to inoculate media containing glycerol (100 ml). After the OD_{600} value reached three to four, cells were harvested by centrifugation at 3000×g for 5 min at room temperature and washed two times with quarter strength ringer solution, resuspended in 20 ml media containing methanol to induce expression. Methanol was added daily to a final concentration of 0.5% for 6 day to compensate the medium evaporation. CBHII expression was studied in three sets of media (YPG/YPM, BMGY/BMMY and BMG/BMM), temperatures (30, 25 and 22°C) and pH (4, 5 and 6).  Every 24h, 0.5 ml of culture was removed from flasks, yeast cells pelleted down by centrifugation. The supernatant concentrated 10 times by ultrafiltration using Millipore membrane (with cut-off 30 kDa) and CBHII activity in supernatants was determined (Laymon *et al.*, 1996).

**Northern dot blot and RT-PCR analysis:** RNA was isolated from induced yeast cells after 48h. The cells were frozen in liquid nitrogen and ground in a mortar together with 1 g acid washed glass beads until a floury consistency was reached. Total RNA was extracted by the guanidinium thiocyanate method, (Sambrook and Russell, 2001). The mRNA was purified from total RNA using High Pure mRNA Purification Kit (Roch).

The Dig labeled probe specific for *cbhII* gene was synthesized by PCR amplification using CP3 and CP4 primers, Dig labeled dNTP (Roch) and pSZ4 as template and the 697 bp fragment isolated from the gel. 5 to 10 µg of the purified mRNA was transferred to Hybond N nylon membrane using Dot Blotter, and backed at 80°C for 2h. Hybridization was performed by standard methods (Sambrook and Russell, 2001) and developed according to Dig-labeling Kit manufacturer’s instruction (Roche).

**Sequence analysis and structure prediction:** CBHII sequences from different *Trichoderma* sp. were retired from uniprot database ([http://www.pir.uniprot.org](http://www.pir.uniprot.org)). Multiple sequence alignment was generated using Clustal W ([http://www.ebi.ac.uk/ClustalW](http://www.ebi.ac.uk/ClustalW)). A three dimensional (3D) model of *T. parceramosum* CBHII protein was predicted based on the known 3D structure of *T. reesei* CBHII molecule (Koivula *et al.*, 1996).

**RESULTS**

In order to amplify *cbhII* gene from *T. parceramosum*, a high cellulase enzymes producer, we aligned a set of known *cbhII* gene sequences from the GenBank database at the National Center for Biotechnology Information (NCBI). Based on the sequence similarity, the specific oligonucleotide primers (CF22 and CB22) were designed and the genomic and cDNA copies of *cbhII* were amplified from chromosomal and first-strand cDNA, respectively. A specific band of 1582 bp was amplified from *T. parceramosum* chromosomal DNA and confirmed by nested PCR using CP3 and CP4 primers (Fig. 1). The restriction pattern analysis using *Xho*I, *Pst*I, *Bcl*I and *Xba*I enzymes did not reveal any similarity to the *T. reseei* PCR product, using CF22 and CB22 primers (data not shown). Following amplification of genomic DNA from *T. parceramosum*, DNA fragment was cloned in pBluescript SK(+) and designated pSZ3. The cloned fragment (1582 bp) was sequenced and submitted to the NCBI data base under accession No. AY651786.

Under conditions described in material and methods, cDNA fragment about 1.4 kb was obtained. This PCR product was isolated, ligated to the pBluescript SK(+) vector and designated pSZ4. Comparison of the cDNA sequence with the genomic *cbhII* sequence

![Figure 1.](http://www.ebi.ac.uk/ClustalW)
Figure 2. Nucleotide and deduced amino acid sequences of *T. parceramosum* cbhl gene. The intron sequences are presented with small character. The signal sequence is underlined. Stop codon is indicated by an asterisk. The fungal type cellulose-binding domain (fCBD) is boxed. The linker region is shown by arrow “a”. The catalytic core domain is shown by arrow “b”. Shaded regions correspond to primers CP3 and CP4 used for nested PCR.
showed that this gene contains three introns, 53, 54 and 62 bp in length (Fig. 2). The cDNA contains an open reading frame encoding a protein of 470 amino acids (Fig. 2).

Multiple alignment of the deduced amino acid sequence with fungal CBHII proteins was performed with the CLUSTAL W program. When *T. parceramosum* CBHII was compared with the previously reported CBHII sequences of *T. koningi* (AF315681), *T. reesei* (M16190), and *T. viride* (AY368688), most of the residues are conserved and only 14 positions have been changed (Fig. 3). Pair wise alignment shows very high homology between the *T. parceramosum* CBHII and other fungal CBHII proteins, *T. koningi* (97.2%), *T. reesei* (97%), and *T. viride* (97.2%) (Fig. 4), while the homology at nucleotide sequence level showed to be 85.9%, 85.9% and 88.4%, respectively, most of the nucleotide differences were located in the introns.

**Construction of the vector for CBHII expression in *P. pastoris* GS115:** In this investigation we have used the methylotrophic yeast, *P. pastoris*, as the host for the expression and secretion of recombinant CBHII from *T. parceramosum*. The plasmid pSZ5 contained the native *S. cerevisiae* α-factor secretion signal upstream of the coding sequence of CBHII together with the termination signal and the AOX1 promoter (Fig. 5). For transformation of cbhII cassette into *P. pastoris* GS115, pSZ5 was digested by BglII and the fragment containing cbhII gene was purified from the gel and used for electroporation. Integration of cbhII gene into the yeast genome was confirmed by PCR using gene-specific and AOX1 promoter primers (Fig. 6). 63 transformants were screened out by functional assay after 2 days incubation by methanol. All colonies were transferred to minimal dextrose (MD) media and a replica plate in a minimal methanol (MM) media.

![Figure 3. Sequence alignment with CLUSTAL W of the deduced amino acid sequences of *T. parceramosum* CBHII (TP) with those of *T. koningi* (TK), *T. reesei* (TR), and *T. viride* (TV). Single-letter amino acid is used.](image)
supplemented with 0.5% carboxy methyl cellulose (MM-CMC) was prepared. Three colonies were selected by staining the MM-CMC plates with congo red.

**Expression of cellobiohydrolase II in *P. pastoris***: An attempt was made to express CBHII in baffled shake flasks in different media (containing glycerol or methanol), pH (4, 5 and 6) and temperatures (22, 25 and 30°C). Protein expression was initiated by checking carbon source from glycerol to methanol using YPG to YPM, BMG to BMM and BMGY to BMMY. The pH affects proteases activity thus finding suitable pH is important. Temperature value probably affects the efficiency of correct folding and secretion. The supernatants were collected and screened for CBHII activity every 24h. Enzyme activity was detected in BMG/BMM medium at pH 5 and 22°C culture condition and induction after 6 days (Fig. 7). However only low enzyme activity was detected in culture supernatants. Northern dot blot and RT-PCR analysis revealed transcription of the gene (Fig. 8).

**Structure prediction of CBHIII**: Sequence of *T. parceramosum* exhibited 98.3% identity to Cel6A catalytic domain of *T. reesei* (PDB code: 1CB2). Figure 9 illustrates the observed sequence identity by showing the alignment of these two protein sequences. This allowed us to use the Cel6A as suitable template for protein 3D structure modeling. The predicted structure was found to have an RMS fit at 0.23Å for all
backbone atoms. This structure alignment shows functional similarity between two proteins (Fig. 10). Comparison of amino acid sequences in linker region of *T. parceramosum* CBHII with *T. reesei* shows amino acid differences in this region which increases the putative glycosylation sites in *T. parceramosum* CBHII protein (http://www.cbs.dtu.dk/services/NetOGlyc).

Analysis of CBHII enzyme from *T. reesei* based on crystallographic studies demonstrated three key residues of D199, D245 (proton donor) and D425 (nucleophile) in the active site, and four disulfide bounds which have main role in its 3D conformation (Rouvinen et al., 1990 and Koivula et al., 1996). Sequence similarity of CBHII from *T. reesei*, *T. parceramosum* and other related and unrelated fungi showed this active site residues and disulfide bound sites have been conserved (Fig. 11), suggesting a similar role of action in all cellobiohydrolases II from different genus and species.

**Figure 8.** A) RT-PCR showing cbhII transcription in induced selected *P. pastoris*, transformed with pSZ5 construct. M: Ladder, e43: RT-PCR from transformant using cbhII specific primers (C2EF and C2EB) and 18s rRNA primers (18sU and 18sR), H: nontransformant host as negative control, C−: Negative control of RT-PCR for detection of DNA contamination, C+: Positive control of PCR using Chromosomal DNA as template. B) Northern Dot blot. C−: mRNA used from nontransformant host, C+: Diluted pSZ5 DNA, cd: First strand cDNA from transformants, 1: 10 µg mRNA from transformants, 2: 5 µg mRNA from transformants.

**Figure 9.** Alignment of the catalytic domain of CBHII from *T. reesei* and deduced amino acid sequence of the catalytic domain of *T. parceramosum* CBHII by BLAST2. H and S represent Helix and b-Strand respectively.
A highly producer of cellulase enzymes Iranian isolate of *T. parceramosum* was used for amplification of the genomic and cDNA copies of *cbhII* gene. DNA sequence information confirmed showed high homology to the previously reported *cbhII* sequences of *T. koningi* (Zhu et al., 2000a), *T. reesei* (Zhu et al., 2000b), and *T. viride* (Liu et al., 2003) has been cloned. Analysis of the *cbhII* sequence demonstrated that it contains three small introns which also been reported in other *cbhII* fungal genes (Chen et al., 1987; Murray et al., 2003). The consensus sequences, GT on the 5´end and AG on the 3´end for each intron of the *cbhII* gene are also observed. The coding region of *cbhII* from *T. parceramosum* cogs for a polypeptide of 470 amino acids, the first 24 residues of which form a putative signal peptide by similarity (Fagerestam and Petterson, 1980). The calculated size of the predicted product is 49 kDa. Thus, the mature secreted protein would have a calculated molecular mass of 47 kDa. The mature protein starts with a cellulose binding domain (41 amino acids), followed by a proline/serine/threonin rich 41 amino acids (from 66 to 106, based on the amino acid sequence alignment between CBHII protein from *T. parceramosum* and three other mentioned *Trichoderma* species) as linker and a 365 amino acids (107 to 470) (Fig. 2) as catalytic domain (Koivula et al., 1996).

Expression of recombinant cellulases has previously been reported in bacteria (Laymond et al., 1996), the yeast *S. cerevisiae* (Penttila et al., 1988), and in filamentous fungi (Takashima et al., 1998). However, although the transformed cellulase gene was expressed and translated in *E. coli*, the enzyme product was not secreted but remained as inclusion bodies in cytoplasm (Laymond et al., 1996), whereas recombinant cellulase secreted by *S. cerevisiae* was hyper-glycosylated resulting in reduced substrate-binding capacity and catalytic activity (Penttila et al., 1988). We used *Pichia pastoris* for expression of CBHII protein.

Since the secretion of recombinant proteins is dependent upon the type of signal sequence adopted (Romanos et al., 1992), the construct (pSZ5) contained the native *S. cerevisiae* α-factor secretion signal upstream of the coding sequence of CBHII together with the termination signal and the AOX1 promoter was used. Fusion of the target gene to the *S. cerevisiae* α-factor signal peptide directs efficient secretion of the target protein to the culture medium, which will facilitate the subsequent study of recombinant protein. Previous reports showed that the AOX1 promoter stimulates high levels of transcription in cells cultured in methanol containing medium and repressed in cells cultured on other carbon sources (Tschopp et al., 1987; Cregg et al., 1989).

In optimum conditions (pH=5, Temperature 22°C, and 6 days of incubation) for expression of CBHII in *P. pastoris* only low level of enzyme activity was detected. Although it has been reported that *P. pastoris* represents an appropriate host for the heterologous expression of functional fungal cellulases (Ding et al., 2002), however low level of expression of recombinant proteins in *P. pastoris* may be the result of potential impediments for protein secretion including the codon usage of the expressed gene (Outchkourov et al., 2002), copy number of the gene (Vassileva et al., 2001), the efficiency and strength of promoters (Sears et al., 1998), translation signals (Cavener and Ray, 1991) signal peptides (Zaror et al., 2000 and Raemaekers et al., 1999), processing and folding in the endoplasmic reticulum and Golgi (Kowalski et al., 1998), environmental factors of expression (Villatte et al., 2001), extracellular secretion (Rossini et al., 1993), and protein turnover by proteolysis (Cregg et al., 2000). Therefore, it remains to be studied which of these control points for enhancement of CBHII production exist in the secretory machinery of *P. pastoris*.

Structural prediction of CBHII based on comparative protein modeling was elaborated online using SWISS-MODEL and Swiss-pdbViewer (Guex and Peitsch, 1997). The fit between 3D structure model was evaluated in Swiss-pdbViewer by calculating the Root Mean Square (RMS) deviation. The predicted structure was found to have an RMS fit at 0.23Å for all
Figure 11. Alignment of CBHII protein sequence from different sources. Cystein residues which involve in disulfide bonds [at the conserved regions (Boxed)], were shown by linked lines. Three key residues (D) in active site were highlighted. (AF156694, Volvariella volva; AF302657, Hypocrea jecorina; AF315681, T. koning; AF439936, Talaromyces emersoni; AY36688, T. viride; M16190, T. reesee; M55080, T. reesee; S76141, Phanerochaete chrysosporium).
backbone atoms. This structure alignment shows functional similarity between two proteins.

The role of glycosylation is related to the secretion of these cellulolytic enzymes, to provide sufficient spatial separation between the core and cellulose binding domains, and to protect the linker peptide against proteolysis (Clarke, 1997; Hui et al., 2001). Linker region of T. parceramosum CBHII shows to have higher putative glycosilation sites in comparison to T. reesei CBHII. We thus predict the structure of T. parceramosum CBHII with some functional changes in comparison to the same enzyme from T. reesei.

References


Chen CM, Gritzali M, Stafford DW (1987). Nucleotide sequence of the yeast


Liu BD, Yang Q, Zhou Q, Song JZ (2003). Cloning and Sequence Analysis of cellobiohydrolase II (cbhII) gene from Trichoderma viride CICC 1038, Department of Life Science and Engineering, Harbin Institute of Technology, Dong Da Zhi, Harbin, Heilongjiang 150001, P.R. China.


Zahri et al.  

Factors. *Yeast*, 9: 77-84.  