Intravenous Lidocaine for Refractory Chronic Orofacial Pain
Two case reports and a literature review

Abdulaziz Almahrezi,1 Louise Lamb,2 Mark A Ware,2 Yoram Shir,2 *Ibrahim Al-Zakwani3

1Department of Family Medicine and Public Health, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman; 2McGill University Health Centre, Pain Centre, Montreal General Hospital, Montreal, Quebec, Canada; 3Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman

*To whom correspondence should be addressed. Email: ial_zakwani@yahoo.com

ABSTRACT

This report presents the results of treatment of two adults, at the Pain Center of Montreal General Hospital, Canada, with intravenous lidocaine for intractable orofacial pain. Repeated lidocaine infusions (1 mg/kg in a bolus, followed by 4 mg/kg infused over 1 hour) resulted in satisfactory pain relief in both patients, and the drug was well tolerated. Intravenous lidocaine therapy may be considered for intractable orofacial pain; further research is warranted.

Keywords: Facial pain; Lidocaine; Therapeutics; Humans; Review; Literature; Case reports; Canada

Intravenous Lidocaine for Refractory Chronic Orofacial Pain
Two case reports and a literature review

Abdulaziz Almahrezi,1 Louise Lamb,2 Mark A Ware,2 Yoram Shir,2 *Ibrahim Al-Zakwani3

1Department of Family Medicine and Public Health, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman; 2McGill University Health Centre, Pain Centre, Montreal General Hospital, Montreal, Quebec, Canada; 3Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman

*To whom correspondence should be addressed. Email: ial_zakwani@yahoo.com

ABSTRACT

This report presents the results of treatment of two adults, at the Pain Center of Montreal General Hospital, Canada, with intravenous lidocaine for intractable orofacial pain. Repeated lidocaine infusions (1 mg/kg in a bolus, followed by 4 mg/kg infused over 1 hour) resulted in satisfactory pain relief in both patients, and the drug was well tolerated. Intravenous lidocaine therapy may be considered for intractable orofacial pain; further research is warranted.

Keywords: Facial pain; Lidocaine; Therapeutics; Humans; Review; Literature; Case reports; Canada

Intravenous Lidocaine for Refractory Chronic Orofacial Pain
Two case reports and a literature review

Abdulaziz Almahrezi,1 Louise Lamb,2 Mark A Ware,2 Yoram Shir,2 *Ibrahim Al-Zakwani3

1Department of Family Medicine and Public Health, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman; 2McGill University Health Centre, Pain Centre, Montreal General Hospital, Montreal, Quebec, Canada; 3Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman

*To whom correspondence should be addressed. Email: ial_zakwani@yahoo.com

Chronic orofacial pain includes a group of disorders with diverse etiologies affecting approximately 10% of the adult population and 50% of the elderly1 of whom at least 50% seek medical treatment.2 Diagnosis is difficult due to lack of a clear diagnostic classification3 and routine treatment modalities are often not effective.4 Surgery may be considered in selected cases; however, current international guidelines recommend multi-modal approaches for the management of orofacial pain. These include pharmacological, nerve blocks, physiotherapy and psychological therapies.5,6

Intravenous lidocaine has been used in a variety of neuropathic pain syndromes such as diabetic neuropathy7 and post herpetic neuralgia.8 To date, few published reports exist on the therapeutic role for intravenous lidocaine in chronic orofacial pain.9 Here we describe two patients, who presented at the Pain Center, Montreal General Hospital, Canada, with features of a mixed nociceptive-neuropathic pain syndrome, but with a primarily nociceptive etiology. They both experienced long-term pain relief after repeated lidocaine infusions.

CASE 1

This 46-year old female presented with a long history of pain in the area of both temporomandibular joints (TMJ). The pain was constant and sharp in nature and woke the patient up to 2-3 times per night. The average pain was 8 out of 10 on a visual analogue scale (VAS), a measure of pain intensity expressed on a zero to ten score. In addition, the patient described severe
attacks of intermittent ‘pulling-like’ pain, lasting for 30 to 60 minutes. The pain was provoked by chewing solid foods and exposure to humid weather. Mild pain relief was obtained with local ice packs and rest. She had undertaken five surgical procedures on both TMJs, including a prosthesis on the right and an osteotomy on the left.

Apart from a small area of dysaesthesia in the distribution of the mandibular division of the right trigeminal nerve, the rest of the neurological examination yielded no pathologies. In particular, the patient had no evidence of facial muscles atrophy, weakness or allodynia. However, tenderness bilaterally over the TMJs was noted. The patient was diagnosed with a mixed nociceptive-neuropathic pain syndrome and she was treated with the following medications sequentially: amitriptyline, 25mg/day, gabapentin, up to 900mg/day and sustained release oxycodone up to 20mg/day. Trials with each of these medications had to be abandoned prematurely due intolerable side effects experienced by the patient despite a very slow and careful titration. In view of the patient’s poor tolerance, further trials with other oral medications were not initiated. Nerve blocks were not offered. Furthermore, a trial of physiotherapy which included transcutaneous electrical nerve stimulation (TENS) did not yield any significant result.

As an alternative, the patient was given a trial of intravenous lidocaine, using 1 mg/kg in a bolus followed by an infusion of 4 mg/kg over 1 hour. Response to treatment was recorded using both the VAS and the Neuropathic Pain Scale (NPS): pre-infusion and at 1 hour, 4 days and 14 days post-infusion. During the infusion, and for 14 days thereafter, the patient’s pain decreased by more than 70% [Figure 1]. She reported no pain while chewing, and was able to have a solid meal for the first time in years. The patient received four lidocaine infusions during a period of four months with ongoing pain relief. Since beginning lidocaine treatment the patient has not been taking any other pain medications.

CASE 2

This 51 year old female presented with chronic pain over the right mandible. The patient had a history of a benign right mandibular cyst for which she had mandibular condyle and disc removal with graft reconstruction. The pain was refractory to botulinum toxin...
injections, sympathetic ganglion blocks, and various oral medications including opioids and anti-convulsants. The patient underwent replacement of the right TMJ; however, despite significant improvement in function, the pain persisted. The pain was described as constant, deep, with numbness and tingling at the painful area and was triggered by eating and speaking.

On examination, she had difficulty opening her mouth and moving her chin from side to side. The patient had no facial weakness or asymmetry. Tactile and cold hyperalgeasia was detected over the lower part of the right face. The remainder of the neurological assessment including cranial nerves, motor, sensory, and cerebellar examination was normal. At the time of referral, she was taking amitriptyline 75mg/day, gabapentin 1800mg/day, lorazepam 1.5mg/day, and ketorolac 10 mg as necessary. Further titration of the doses of both amitriptyline and gabapentin had previously failed due to the development of intolerable side effects. Her average VAS daily pain score was 8 out of 10.

The patient was diagnosed with a mixed nociceptive-neuropathic chronic post-surgical pain. A trial of low dose methadone had to be stopped due to an allergic reaction. The patient was given a trial of intravenous lidocaine, 1 mg/kg in a bolus followed by an infusion of 4 mg/kg over 1 hour. One hour after the treatment the patient experienced total pain relief [Figure 1]. Pain levels increased during the ensuing two weeks, but remained low compared to the pre-infusion period. The patient subsequently received nine infusions in eight months, with ongoing pain relief and improved function, and has decreased her pain medications by 20-30%.

DISCUSSION

Lidocaine, an amide local anesthetic and an anti-arhythmic agent, possesses analgesic properties when given systemically particularly in chronic neuropathic pain conditions, cancer pain, fibromyalgia, and chronic daily headaches.

Findings from experimental models of neuropathic pain suggest that lidocaine acts by suppression of abnormal ectopic discharges which are generated by damaged primary afferents or dorsal root ganglion neurons. Intravenous lidocaine was also shown to produce suppression of mechanical allodynia and hyperalgesia. The postulated mechanism of action was thought to be peripheral in origin; however, this view was later challenged with several lines of evidence suggesting that lidocaine may also have central effects. Some of these observations include: suppression of polysynaptic C-fibre evoked flexor responses without evidence of conduction block at the periphery; suppression of the activity of dorsal horn neurons evoked by ionophoretically administered glutamate and selective inhibition of a nociceptive response in the isolated rat spinal cord. Clinical studies and human experimental models have reached similar conclusions as to the action of intravenous lidocaine on mechanical allodynia and hyperalgesia. In one study on healthy volunteers using the heat/capsaicin sensitisation model, intravenous lidocaine (5 mg/kg) was shown to have a selective effect on secondary hyperalgesia.

Several well-designed studies have documented the effectiveness of intravenous lidocaine. A randomised double-blind cross-over study showed that intravenous lidocaine (5mg/kg over 30 minutes), but not saline, reduced symptoms of pain, dysesthesia, paraesthesia and nightly pain exacerbation as well as sleep disturbance in patients with chronic painful diabetic neuropathy for a period of 3-21 days. According to VAS, 11 out of 15 patients had a significant reduction (a reduction of greater than 15 millimetres on the VAS) in pain for a period of 3 days and no reported side effects. Another similarly designed study investigated the effect of two different doses (1 mg/kg and 5 mg/kg over 2 hours) of intravenous lidocaine on 24 patients of postherpetic neuralgia. The investigators reported a significant reduction in VAS for evoked pain and a decline in the area of allodynia for up to 120 minutes following treatment with intravenous lidocaine. Circumoral paraesthesia was the only side effect reported by patients who received the higher dose. In a similar study investigating the effects of intravenous lidocaine (5 mg/kg over 30 minutes) on neuropathic central pain, a significant reduction (VAS score decreased by 50% or more) in spontaneous pain was reported. This response was achieved by 10 out of 16 patients. The period of observation in this study was for 45 minutes after the infusion. Investigators, using quantitative sensory testing, also reported a reduction in the intensity of mechanical allodynia and hyperalgesia. Side effects were reported as moderate and consisted mainly of lightheadedness, somnolence, nausea and dysarthria.

Sorenson et al studied
11 fibromyalgia patients who were randomised to lidocaine (5 mg/kg over 30 minutes) and saline in a double-blind and crossed-over design trial. Four patients were reported as responders (a reduction of 16 millimetres or greater on the VAS). Three of the responders had a reduction in pain for 4-7 days. Side effects were mild and included nausea, perioral numbness, drowsiness, dysarthria and tremor. In another study of postamputation pain, intravenous lidocaine (1 mg/kg bolus + 4 mg/kg over 40 minutes), but not the placebo (diphenhydramine) decreased stump pain until 30 minutes after the infusion. No side effects were reported.

Both of our patients had reported nausea and light-headedness during the period of the infusion. This is consistent with previously mentioned studies which documented only mild and transient adverse effects; however, serious side effects such as arrhythmias and pulmonary edema can occur with high doses. Close monitoring of the patient while receiving the infusion is therefore recommended. This is usually performed by means of a continuous electrocardiogram (ECG) and a regular check-up of blood pressure and heart rate.

Besides side effects, other problems associated with the use of intravenous lidocaine include: invasiveness and the inconvenience of the intravenous route. Possible alternatives to intravenous lidocaine are transdermal lidocaine and oral congeners such as mexilitine. A lidocaine patch has been shown to be effective in a randomised controlled trial in postherpetic neuralgia; however, patients may find it inconvenient to apply a patch on the face. Furthermore, it is not known if a good response to intravenous lidocaine would predict a similar response to transdermal lidocaine since the concentration of plasma lidocaine would be much lower with local administration. Mexilitine has been suggested as an alternative particularly in patients who respond negatively to intravenous lidocaine; however, the use of this drug is associated with frequent side effects which limit its usefulness.

In randomised controlled trials of chronic pain, the doses of intravenous lidocaine used ranged between 1 to 5 mg/kg. However, we elected to use a total dose of 5 mg/kg since this dose seems to be the best documented effective dose according to a systematic review of these trials.

The significance of our case reports is twofold: first, they provide the first evidence of the usefulness of intravenous lidocaine as a therapeutic option in the management of chronic orofacial pain. Second, these reports raise the likelihood that intravenous lidocaine is not only effective in pure neuropathic pain syndromes, as the current literature suggests, but may also be effective in mixed nociceptive and neuropathic pain conditions that are primarily nociceptive in origin. The observations that lidocaine is effective in non-neuropathic pain conditions such as burns and fibromyalgia, together with the variable effect of lidocaine in peripheral or central neuropathic pain conditions and its effect beyond the pharmacological half-life, are all supportive of this latter conclusion.

CONCLUSION

In summary, based on this experience, intravenous lidocaine was a powerful and successful treatment option after several insufficient therapeutic attempts that included oral pharmacotherapy, nerve blocks and surgery. A trial of intravenous lidocaine should be considered much earlier, even if a multimodal management approach is used. Moreover, intravenous lidocaine should also be tried in pain syndromes of nociceptive origin rather than reserving it only for patients with pure neuropathic pain conditions. However, further research is needed to determine the exact role of intravenous lidocaine in the treatment of orofacial pain.

REFERENCES

