Effect of pegylated interferon on non-responders and relapsers with interferon

*Hisham O. Akbar, Mahmoud S. Al Ahwal

ABSTRACT. Objectives: To assess whether a combination of pegylated interferon (interferon conjugated with polyethylene glycol) and ribavirin can improve the response rate in patients with chronic hepatitis C who either did not respond to (Non-responders), or had relapsed after responding to (Relapsers) standard interferon and ribavirin combination therapy.

Patients and methods: In this prospective study, 20 chronic hepatitis C patients (comprising 16 Non-responders and 4 Relapsers to previous treatment with alpha interferon and ribavirin), were treated with pegylated interferon-2b weekly and ribavirin daily for one year. Eleven patients had genotype 4, eight were of genotype 1 and one patient had genotype 3. Response to treatment was determined based on normalisation of liver enzymes and negative viral load (assessed using qualitative HCV RNA PCR) at end of treatment (ETR) and 6 months off treatment (SVR).

Results: Seven patients (35%) achieved normalisation of liver enzymes and negative viral load at the end of treatment. However, only 2 patients (10%) managed to retain these levels after six months off treatment. The latter two patients had been previous Relapsers.

Conclusion: Combination of pegylated interferon and ribavirin may be beneficial in previous relapsers with standard interferon-ribavirin combination therapy, but is unlikely to achieve sustained virological response in non-responders.

Key words: pegylated interferon, ribavirin, hepatitis C virus, non-responders, relapsers

Department of Medicine, King Abdulaziz University Hospital, Jeddah P.O.Box 80215, Jeddah 21589, Saudi Arabia.

*To whom correspondence should be addressed. Email: gastro20000@yahoo.com
Diagnostics). Relapers were those patients who had normal liver enzymes and undetectable viral load (HCV RNA PCR-qualitative) at end of treatment that was not persistent 6 months after stopping combination therapy. All patients were at least 6 months and not more than 2 years off-treatment.

End of Treatment Response (ETR) was defined as normalisation of liver enzymes and negative HCV RNA PCR (qualitative) at end of treatment. Sustained Virologic Response (SVR) was defined as persistent normalisation of liver enzymes and negative HCV RNA PCR (qualitative) 6 months off treatment. SPSS statistical package was used for analysis. Descriptive statistics were done. P-value was set at <0.05 for statistical significance.

Patient Characteristics
Twenty patients, comprising 16 Non-responders and 4 Relapers (to a previous combination treatment) were included in the study. The patients were followed for the period from March 2000 to November 2001 at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Before treatment, complete blood count (CBC), liver function test (LFT), prothrombin time (PT), thyroid function test (TFT/T4, TSH), quantitative HCV RNA PCR (Roche Diagnostics), gastroscopy and abdominal ultrasound were conducted. Quantitative HCV RNA PCR results were grouped into low (<106 copies/ml), moderate (106–107 copies/ml) and high (>107 copies/ml). Previous liver biopsy results before treatment with combination therapy were considered while assessing patient response to pegylated interferon. Histological severity using grading for necroinflammatory activity and staging for degree of fibrosis was reported as mild hepatitis (grade 2, stage 1), moderate hepatitis (grade>2, stage 2), severe hepatitis (grade>2, stage 3) and liver cirrhosis (stage 4). Patients included in the study were started on pegylated interferon-2b (Schering Plough USA) 100 mcg subcutaneously weekly, together with ribavirin (400 mg) twice daily for one year. CBC and LFT were repeated weekly for the first month and then monthly until the end of treatment. TFT and qualitative HCV RNA PCR were repeated after 6 months during treatment (p<0.05). Two patients (one with low and another with moderate viral load) had achieved SVR (p>0.05). These two patients had respectively mild and moderate hepatitis (p>0.05).

Seventeen patients (85%) had leucopenia (4 patients had WBC 3.4×10^9/l, 13 patients had WBC 2.3×10^9/l) and 3 patients (15%) had thrombocytopenia (<150×10^9/l) during current treatment. On reviewing these patients’ previous CBC results while they were on regular interferon combination therapy, it was found that 6 of them (30%) had leucopenia (5 patients had WBC 3.4×10^9/l, sound did not show evidence of ascites, splenomegaly or focal liver lesions. Viral load was low in three patients (15%), moderate in 16 patients (80%), and high in one patient (5%). Eleven patients (55%) were of genotype 4, five patients (25%) had genotype 1a, three patients (15%) had genotype 1b, and one patient (5%) had genotype 3 (consistent with the most prevalent genotypes among this community where genotypes 1 and 4 account for >86.4%). Two patients (10%) had mild hepatitis, 8 patients (40%) had moderate hepatitis, 6 patients (30%) had severe hepatitis and 4 patients (20%) had liver cirrhosis.

RESULTS

Seven patients (35%) achieved ETR with pegylated interferon and ribavirin, and 3 of them had low viral load and 4 had moderate viral load; 2 patients had mild hepatitis and 4 had moderate hepatitis. Four patients had already achieved ETR with previous treatment with regular interferon combination therapy, but were Relapers, and 3 patients were Non-responders. Two patients (10%) had SVR (genotype 1a,3) while another patient, of genotype 4, had persistent normal AST level with positive HCV RNA PCR 6 months off treatment (Sustained Biochemical Response – SBR). All patients who had SVR or SBR were Relapers [Table 1]. Patients who achieved ETR with the current treatment had already negative HCV RNA PCR (qualitative) after 6 months during treatment (p<0.05). Two patients (one with low and another with moderate viral load) had achieved SVR (p>0.05). These two patients had respectively mild and moderate hepatitis (p>0.05).

Seventeen patients (85%) had leucopenia (4 patients had WBC 3.4×10^9/l, 13 patients had WBC 2.3×10^9/l) and 3 patients (15%) had thrombocytopenia (<150×10^9/l) during current treatment. On reviewing these patients’ previous CBC results while they were on regular interferon combination therapy, it was found that 6 of them (30%) had leucopenia (5 patients had WBC 3.4×10^9/l, sound did not show evidence of ascites, splenomegaly or focal liver lesions. Viral load was low in three patients (15%), moderate in 16 patients (80%), and high in one patient (5%). Eleven patients (55%) were of genotype 4, five patients (25%) had genotype 1a, three patients (15%) had genotype 1b, and one patient (5%) had genotype 3 (consistent with the most prevalent genotypes among this community where genotypes 1 and 4 account for >86.4%). Two patients (10%) had mild hepatitis, 8 patients (40%) had moderate hepatitis, 6 patients (30%) had severe hepatitis and 4 patients (20%) had liver cirrhosis.

<table>
<thead>
<tr>
<th>Drug used</th>
<th>Number of patients who responded</th>
<th>ETR</th>
<th>SVR</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon and ribavirin</td>
<td>4 (20%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pegylated interferon and ribavirin</td>
<td>7 (35%)</td>
<td>2 (10%)</td>
<td>1 (5%)</td>
<td></td>
</tr>
</tbody>
</table>

ETR: End of treatment response
SVR: Sustained virologic response
SBR: Sustained biochemical response
and one had $2.3 \times 10^9/l$ and none had thrombocytopenia $(P>0.05)$.

One patient was hypothyroid on replacement therapy from previous interferon treatment; however L-thyroxin requirement of this patient did not increase during the current treatment with pegylated interferon and ribavirin. None of the other patients developed denovo thyroid dysfunction. None of the patients experienced significant subjective constitutional symptoms with the current therapy as compared to previous therapy of regular interferon-ribavirin combination.

DISCUSSION

Since the discovery of HCV, treatment of patients chronically infected with this virus was continuously modified to achieve higher response rates. Several variables were found to affect treatment response, including age at infection, gender, viral load, virus genotype, stage of liver fibrosis and patient’s immunity status. Iron overload was found to decrease patient response to treatment; however iron reduction via phlebotomy did improve the response. Response to treatment in HCV patients is assessed by the normalisation of liver enzymes and decrease in viral load beyond detection level (qualitative HCV RNA PCR <100 copies/ml). Hence non-responders and relapers represent the same group of patients where both groups have persistent viraemia at end of treatment with the difference in the load being above or below detection level depending on the test used. With the improvement of viral load assays with lower limit detection level, more cases of true non-responders rather than relapers should be diagnosed in future. Non-responders or relapers to old treatment regimen have been candidates in different controlled studies for new regimens to improve their response as compared to naïve patients. Extended and higher dose treatment with interferon monotherapy was associated with decreased relapse rate and sustained response rate in 20–40% of cases. Introduction of combination therapy was more effective than interferon monotherapy in naïve patients. However, results were disappointing with re-treatment in patients who did not respond to initial interferon monotherapy (3–29%) and was associated with sustained response in 46–58% in selected group of relapers. Viral mutation and development of quasispecies in response to standard interferon regimen together with pre-treatment patients and viral demographics may explain the response failure in the majority of patients infected with HCV to interferon monotherapy or combination therapy (>50%). Long-acting pegylated interferon, which is associated with constant levels between consecutive doses, was found to be more effective than regular interferon in naïve patients. In our study, more patients had ETR with pegylated interferon combination therapy as compared to previous regular interferon combination therapy (7 versus 4 patients). This effect was influenced by the viral load $(p=0.056)$ rather than by the degree of fibrosis $(p=0.056)$. Unfortunately this response was not durable after stopping treatment where only 2 patients (10%) had SVR and 5 patients relapsed off treatment (71.4%). SVR was only achieved in a subset of patients that had viral load below detectable level with previous standard combination therapy (Relapers). This additional effect of pegylated interferon is probably through decreasing viral mutation or development of less quasispecies strains. Though pegylated interferon was slightly superior to regular interferon in this group of patients, this effect is modest since it does not change most of pre treatment host and viral factors that also influence patient response.

In a similar study by Afzal et al using pegylated interferon alfa-2a plus ribavirin only preliminary ETR was reported. ETR was 61% in relapers and 25% in non-responders. Other combinations were used with pegylated interferon including mycophenolate mofetil and amantadine. The highest ETR reported was 71% in relapers and 40% in non-responders upon adding amantadine to pegylated interferon and ribavirin. In our study ETR was 100% in Relapers and 18.7% in Non-responders, however SVR was 50% in Relapers and 0% in Non-responders.

Other drugs have been used as adjuvant or alternative therapy including ursodeoxycholic acid, non-steroidal anti inflammatory drugs, thymosin, ISIS 14803 (anti-sense therapy), histamine dihydrochlord (Maxamine) and interleukins 10 and 12, none of them improved viral response rates. New investigational agents such as proteinase inhibitors, Albuferon, VX–497 and ribozyme therapy may prove to be beneficial in future.

Currently there is no solid consensus regarding treatment of non-responders or relapers after standard interferon-ribavirin combination therapy. However it seems that relapers may benefit from pegylated interferon combination therapy. Further studies are required to assess whether prolonged or maintenance pegylated interferon alone or in combination with other anti viral agents can improve response in this group of patients.
CONCLUSION

This study suggests that therapy with pegylated interferon in combination with ribavirin may be beneficial in patients with HCV who relapsed after initially clearing HCV RNA during previous treatment with standard interferon-ribavirin combination therapy. Patients with persistent viral load during previous standard combination therapy are unlikely to respond to pegylated interferon-ribavirin combination therapy and should be enrolled in more clinical trials with different drugs and regimen to achieve a better response.

REFERENCES

30. Kwong AD. Vx-497 a novel IMPDH inhibitor is a broad spectrum antiviral agent with superior activity compared to ribavirin against selected DNA and RNA viruses in vitro. Hepatology, 1999; 30, 261A.