Pharmacokinetic and bioequivalence studies of immediate release diclofenac potassium tablets (50mg) in healthy volunteers

Huma Ali1,2*, Muhammad Harris Shaob1, Farya Zafar2, Muhammad Hanif1, Rabia Bushra1, Asia Naz1 and Raheela Khursheed2
1Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
2Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan

Abstract: This study was conducted with the aim to determine the pharmacokinetic and bioequivalence of diclofenac potassium 50 mg test (F4) tablet formulation with reference product (Caflam). Present study was single dose, randomized, two phase cross over design, conducted in 12 healthy Pakistani volunteers and planned in accordance with FDA guidelines. In this study a simple, selective, sensitive and reproducible HPLC procedure was developed and validated for the estimation of diclofenac potassium in plasma. The process was validated in the range of 50 - 0.05 µg.mL⁻¹ and used in bioequivalence trial of two products. Multiple blood samples were collected at various time points (0.5, 1, 2, 3, 4, 5, 6, 10, 12 and 14 hr after treating volunteers with test (F4) and marketed reference brand. Plasma separation and deproteination were carried out with acetonitrile; samples (20µL) were injected using the validated HPLC method. Various pharmacokinetic parameters (compartmental and noncompartmental) were estimated using Kinetica™ 4.4.1 (Thermo Electron Corp. USA). Bioequivalence among the products was established by calculating the 90% CI with log and non log transformed data for Cmaxcalc, AUC0-∞, AUClast and AUCtot using two way ANOVA and Schirmann’s Two one sided t-test. No significant difference was found between log and non-log data. The 90% confidence interval values using log transformed data for AUC0-∞ (0.997-1.024), AUClast (1.004-1.031), AUClast (0.997 - 1.024), Cmaxcalc (0.994-1.007) and Tmaxcalc (0.996-1.013) for the trial and reference products were found within the FDA acceptable limits of 0.8-1.25. Results were further verified by the Schirmann’s one-sided t test. Results showed the bioequivalence of test and reference formulations. Both the products were well tolerated.

Keywords: Pharmacokinetics, Bioequivalence, Diclofenac Potassium, HPLC, validation, Compartmental and Non-Compartmental, Log and Non log transformed.

INTRODUCTION

Diclofenac potassium belongs to the category of non-steroidal anti-inflammatory drug (NSAID), it inhibits isoforms of cyclo-oxygenase and decreases the synthesis of prostaglandins in the body which is responsible to produces pain and inflammation. It is used for the treatment of mild to severe pain (Mcneely and Goa, 1999), used as an antipyretic agent, particularly useful in the treatment of osteoarthritis and rheumatoid arthritis (Shah et al., 2012), migraine (Diener et al., 2006) and primary dysmenorrhea (Chang et al., 2002).

Process of formulation development become challenging day by day and it is prerequisite to substantiate the formulation change with in vivo study to prove the validity of new formulation with respect to pharmacokinetics and its effectiveness. Today there has been significant application of pharmacokinetic investigations to explain various parameters in specific conditions and individualize the dose of the product (Abbas et al., 2013). Pharmacokinetic parameters are influenced by various factors particularly gastric residence time, volume and composition of gastrointestinal fluids, critical destructive forces during peristalsis and variations in absorption along the gastrointestinal tract (Kimura and Higaki, 2002; Fadda et al., 2010; Coupe et al., 1991). In case of any change in the composition of formulation, various pharmacokinetics investigations in healthy human volunteers are involved to develop bioequivalence with the reference formulation. Bioequivalence is the comparative evaluation between reference and test products to certify the relative bioavailability with exact criteria and particular defined objectives (Chen et al., 2009). The magnitude of bioequivalence studies is well growing over the couple of years due to the high volume of generic products in local markets and their extensive prescribing utilizations (Vetchy et al., 2007). Manufacturers required to conduct the bioequivalence studies to provide assurance for similar drug profiles of the generic version with original drug in bloodstream over time. Metabolic profiles can significantly modifies the pharmacokinetic parameters of the products, so bioequivalence assessment assist in the comparison of the metabolism of different drugs in various populations (Srinivas et al., 2009).

Previously several methods were studied and reported for the assessment of diclofenac potassium in plasma by using LC-MS, HPTLC, spectroscopy, HPLC techniques,
Pharmacokinetic and bioequivalence studies of immediate release diclofenac potassium tablets (50mg)

absorption correction method by different investigators (Umalkar et al., 2011a,b; Sarfraz et al., 2011; Rao et al., 2011; Khatal and Kamble, 2010). Because of complicated procedures and difficult preparation methods make them unsuitable for routine analysis.

For this study a sensitive and precise reverse phase High Performance Liquid Chromatography procedure has been utilized for the evaluation of plasma samples of diclofenac potassium with the suitably low values of LOD (limit of detection) and LOQ (limit of quantification). Presented method is the adaptation of the procedure reported in USP 2007 and is validated following ICH guidelines (ICH, 1996; USP, 2007).

In the present study immediate release (IR) diclofenac potassium test (F4) formulation was selected for pharmacokinetic and bioequivalence study which was previously developed and optimized with rotatable central composite design (Huma et al., 2013). Various pharmacokinetic parameters of test (F4) formulation were evaluated and then compared with reference (marketed) brand in male healthy Pakistani volunteers.

MATERIAL AND METHODS

Material
Two Formulations were used in pharmacokinetics and bioequivalence Studies. Diclofenac Potassium (Caflam50mg tablet, Novartis Pakistan Ltd.) used as the reference product; Diclofenac potassium (DP) raw material was gifted from Hilton Pharma (Pvt.) Ltd. Test formulations of DP were optimized and developed using CCRD (Huma et al., 2013). Trial formulation (F4) was selected as best optimized formulation for pharmacokinetic study.

Chemical and reagents
HPLC grade Methanol and Acetonitrile (Merck, Darmstadt, Germany), Ortho-Phosphoric Acid (Merck, Darmstadt, Germany), monobasic sodium phosphate (Merck, Darmstadt, Germany), Membrane Filters (0.45µ - 47mm & 13mm diameter Millipore, England),

Instrumentation
High performance liquid chromatography; LC 20A, Communication Bus Module; CBM 102 with a Pentium™ IV with software Class; GC 20, Spectrophotometric Detector; SPD-20A (Shimadzu Corp, Japan). Guard column (Merck, Germany), C18 (250 x 4.6 mm x 5 μm), Column (Nucleosil, Germany), Vortex Mixer (Whirl, England), pH meter (3510 Jenway, England), Filtration Assembly (Sartorius, Gottingen, Germany), Centrifuge (Hereues, Osterode, Germany), Ultrasonic Bath (E30H, Elma, Germany), Deionizer (Elga, Highwycombe, England) and Swinney Filtration Assembly (Millipore, England).

Chromatographic conditions
For the mobile phase composition 0.01N methanol - monobasic sodium phosphate was used with equivalent volume 0.01M ortho phosphoric acid in 70:30 ratio. Orthophosphoric acid was used to adjust the pH up to 2.5. Mobile phase was then filtered and degassed before use. Flow rate was adjusted to 1mL min⁻¹ with 20μL injection volume. Detection was carried out at 254 nm.

Bioanalytical method validation
Preparation of stock solution and quality control plasma samples
Stock solution (100µg.mL⁻¹) of diclofenac potassium RS was prepared in Acetonitrile. Serial dilutions were prepared in different concentrations i.e. 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.5, 0.1 and 0.05µg.mL⁻¹. Plasma samples were used in the range of 50-0.05µg.mL⁻¹. Blank plasma was spiked with known concentration of working solutions in 1:1 ratio to yield these concentrations. All solutions were stored at -20°C. For the separation of protein, samples should be vortex for 5mins and then centrifugation should be carried out at 3500 rpm for 10 minutes. Finally supernatant was filtered by 0.45µ membrane filter. Injecting volume of sample was 20μL.

Fig. 1: Calibration curve of diclofenac potassium in plasma

Selectivity/Specificity
For the determination of specificity triplicate placebo, blank plasma and trial samples were injected on HPLC.

Range, linearity, accuracy and precision
For the calculation of regression, SD, CV %, accuracy % and precision %, calibrations curve was plotted for0.05-50µg.mL⁻¹ range of plasma concentrations. Similarly, Intra and inter day precision and accuracy were also observed.

Freeze - thaw & long term stability
In this study three freeze and thaw cycles were conducted. Fifteen different plasma samples were prepared of 0.50µg.mL⁻¹ and 1.56 µg.mL⁻¹ (low &high concentrations), samples were placed at -20°C for 24 hours. For testing only 5 samples were defrosted and rests of samples kept refrozen for next 24 hours. Same method was used for another two cycles i.e., 2 and 3. Fresh samples were compared with freeze-thaw samples and estimated for mean, SD and % CV. Samples were also evaluated at 2nd and 3rd week of storage for long term stability.
Absolute and relative analytical recoveries
For relative and analytical recoveries, five samples (replicates) were injected using four different concentrations (0.5, 1.56, 3.125 and 50 µg mL\(^{-1}\)). Mean, SD, % recoveries and % CV were estimated.

Evaluation of system suitability
Peak area, Tailing factor, retention time and theoretical plates of column were determined for system suitability test.

Pharmacokinetic and bioequivalence study
In the present investigation, different pharmacokinetic parameters of trial (F4) and reference product manufactured (Caflam) were determined in 12 healthy male subjects. Bioequivalence study was carried out according to FDA guidelines.

Study design and ethical approval
Present study was designed as open label, single centre, single dose, randomized and conducted in cross over
Pharmacokinetic and bioequivalence studies of immediate release diclofenac potassium tablets (50mg)

manner, with one week washout period. Ethical approval was obtained from ethical review body of Ziauddin University, Karachi, Pakistan (Reference no. 0091111HA). The age groups and weight of all subjects were ranged of 20-40 years and 60-70kg respectively. Before the study medical history and other important tests were establish. Written informed consents were taken before the study from all the subjects.

Protocol of sampling
Each volunteer was given single oral dose of DP (F4) 50 mg in phase 1 and after one week washout period, marketed Brand was administered in crossover manner for phase 2. Blood sample of approximately 5mL was collected at 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12 and 14 hr after administrating volunteers with F4 (trial) and marketed product. Plasma samples were separated after centrifugation for 10 minutes at 3500 rpm and freeze at -20°C. For the estimation of active compound in plasma, above procedure was adopted and samples were determined by HPLC method.

Pharmacokinetic analysis
Compartmental and noncompartmental analysis was carried out using Kinetics™ (ver.4.4.1, Thermo-Electron Corp, USA). Presented data was fitted into oral two compartmental model. Various compartmental parameters i.e. clearance, K_{a}, K_{e}, β, α, $AUC_{0-\infty}$, C_{max}, K_{12}, K_{21}, V_{z}, T_{abs}, $T_{1/2K_{e}}$, $T_{1/2\alpha}$, $T_{1/2\beta}$ were measured. While AUMC, MRTα, AUC_{last}, AUC_{tot}, AUC_{tot}, $AUMC_{last}$, V_{z} and $T_{1/2z}$ were calculated as noncompartmental parameters.

Statistical analysis of bioequivalence
In the present study different bioequivalence parameters i.e. AUC_{tot}, AUC_{last}, $AUC_{0-\infty}$, C_{max} and T_{max} were selected for F4 (trial) and marketed brand following FDA guidelines (FDA, 2008). Also Schirmann’s Two sided t-test was also executed to estimate the difference between two formulations. Two ways ANOVA with Latin Square study design was applied on untransformed and log transformed data following FDA guidelines (FDA, 1992). Wilcoxon Sign Rank test was used for the assessment of untransformed T_{max} using SPSS 20.0 (SPSS Inc).

RESULTS

Method of analysis
In the current study a modified HPLC method was used for the estimation of active compound in plasma. For validation, using 50-0.05µg.mL$^{-1}$ calibration curve was plotted and it was found to be accurate, precise, specific and linear (fig. 1), with coefficient of regression $r^2= 0.999$ which was described by the equation $y=10699x-617.6$. No interference was found from the adjuncts as presented in combined chromatogram showing reference, placebo and blank (figs. 2A & B). For the determination of intraday and interday accuracy and precisions different concentrations were used i.e. 50, 25, 12.5 and 1.56 µg.mL$^{-1}$ as shown in table 1. Absolute analytical recovery was also assessed using four concentrations in mobile phase and plasma both as shown in table 2. Present method showed 0.05µg.mL$^{-1}$ for LOD and 0.10µg.mL$^{-1}$ for LOQ. Freeze and thaw stability and long term stability were conducted and presented in table 3. Results showed excellent stability under storage conditions during routine assessment. For system suitability test results were found within limits (table 4).

Pharmacokinetic parameters
Fig. 3 presented average DP concentration in plasma at different time point for reference and test formulations in 12 healthy male volunteers. Mean values of compartmental and noncompartmental parameters of DP test (F4) and marketed brands are presented in table 5 and 6.
Table 5: Mean compartmental parameters of diclofenac potassium after administration of reference and test formulations in 12 male healthy volunteers. S.D. = Standard deviation and C.V. = Coefficient of variation

| Study Unit | Ka | Beta | Alpha | AUC | T
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
<td>mg/L.hr</td>
<td>Hr</td>
</tr>
<tr>
<td>Mean</td>
<td>2.288</td>
<td>0.166</td>
<td>0.831</td>
<td>4.972</td>
<td>1.094</td>
</tr>
<tr>
<td>SD</td>
<td>0.329</td>
<td>0.023</td>
<td>0.237</td>
<td>0.113</td>
<td>0.010</td>
</tr>
<tr>
<td>%CV</td>
<td>14.39</td>
<td>13.95</td>
<td>28.61</td>
<td>2.290</td>
<td>0.962</td>
</tr>
</tbody>
</table>

| Study Unit | Kd | Vc | K12 | K21 | T
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>L.hr⁻¹</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
</tr>
<tr>
<td>Mean</td>
<td>2.589</td>
<td>0.180</td>
<td>0.950</td>
<td>4.989</td>
<td>1.099</td>
</tr>
<tr>
<td>SD</td>
<td>0.368</td>
<td>0.019</td>
<td>0.261</td>
<td>0.119</td>
<td>0.015</td>
</tr>
<tr>
<td>%CV</td>
<td>17.92</td>
<td>10.69</td>
<td>27.489</td>
<td>2.401</td>
<td>1.379</td>
</tr>
</tbody>
</table>

\(k_d = \text{Absorption rate constant} \)
\(K_d = \text{Elimination rate constant} \)
\(\alpha = \text{Distribution rate constant} \)
\(\beta = \text{Disposition rate constant} \)
\(CI = \text{Total clearance} \)
\(AUC_{0-\infty} = \text{Area under plasma concentration time curve} \)
\(C_{\text{max}} = \text{Maximum plasma concentration} \)
\(T_{\text{max}} = \text{Time to achieve } C_{\text{max}} \)
\(V_c = \text{Volume of the central compartment} \)
\(K_{12} = \text{Rate constant from central to peripheral compartment} \)
\(K_{21} = \text{Rate constant from peripheral to central compartment} \)
\(T_{1/2\alpha} = \text{Absorption Half Life} \)
\(T_{\text{abs}} = \text{Duration of absorption} \)
\(T_{1/2\beta} = \text{Distribution Half Life} \)
\(T_{1/2D} = \text{Disposition Half Life} \)
\(T_{1/2E} = \text{Elimination Half Life} \)
Table 6: Mean non± compartmental parameters of Diclofenac Potassium after administration of Reference and Test formulations in 12 male healthy volunteers

<table>
<thead>
<tr>
<th>Study Unit</th>
<th>AUC_{tot}</th>
<th>AUMC_{tot}</th>
<th>(\lambda_z)</th>
<th>MRT</th>
<th>(t_{1/2z})</th>
<th>AUMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{mg/L} \cdot \text{h})</td>
<td>(\text{mg/L} \cdot (\text{h})^2)</td>
<td>(\text{hr}^{-1})</td>
<td>(\text{h})</td>
<td>(\text{h})</td>
<td>(\text{mg/L} \cdot (\text{h})^2)</td>
</tr>
<tr>
<td>MEAN</td>
<td>5.016</td>
<td>22.844</td>
<td>0.200</td>
<td>4.552</td>
<td>4.110</td>
<td>22.257</td>
</tr>
<tr>
<td>SD</td>
<td>0.089</td>
<td>1.686</td>
<td>0.036</td>
<td>0.278</td>
<td>0.388</td>
<td>1.748</td>
</tr>
<tr>
<td>TEST (F4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>5.105</td>
<td>23.980</td>
<td>0.176</td>
<td>4.696</td>
<td>3.889</td>
<td>21.661</td>
</tr>
<tr>
<td>SD</td>
<td>0.087</td>
<td>1.540</td>
<td>0.031</td>
<td>0.258</td>
<td>0.433</td>
<td>1.521</td>
</tr>
<tr>
<td>%CV</td>
<td>1.698</td>
<td>6.424</td>
<td>17.418</td>
<td>5.485</td>
<td>11.127</td>
<td>7.021</td>
</tr>
</tbody>
</table>

Table 7: Statistical assessment for establishing bioequivalence of DP with log and Non ± Log transformed data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Reference</th>
<th>Test</th>
<th>90 % Confidence Interval</th>
<th>Reference</th>
<th>Test</th>
<th>90 % Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{maxcalc})</td>
<td>1.0005</td>
<td>1.303±1.007</td>
<td>1.305±1.006</td>
<td>0.994±1.007</td>
<td>1.0005</td>
<td>1.303±1.007</td>
</tr>
<tr>
<td>(T_{maxcalc})</td>
<td>1.0047</td>
<td>1.093±1.009</td>
<td>1.098±1.013</td>
<td>0.996±1.013</td>
<td>1.0048</td>
<td>1.093±1.009</td>
</tr>
<tr>
<td>(\text{AUC}_{last})</td>
<td>1.0110</td>
<td>4.727±1.014</td>
<td>4.779±1.016</td>
<td>0.997±1.024</td>
<td>1.0110</td>
<td>4.727±1.014</td>
</tr>
<tr>
<td>(\text{AUC}_{tot})</td>
<td>1.0177</td>
<td>5.105±1.017</td>
<td>5.140±1.017</td>
<td>1.004±1.009</td>
<td>1.0173</td>
<td>5.105±1.017</td>
</tr>
<tr>
<td>(\text{AUC}_{0-\infty})</td>
<td>1.0033</td>
<td>4.971±1.023</td>
<td>4.987±1.024</td>
<td>0.986±1.020</td>
<td>1.0033</td>
<td>4.971±1.023</td>
</tr>
</tbody>
</table>

Table 8: Schirmann’s two one-sided \(t \) test for establishing bioequivalence

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Lower: (t) (10df)</th>
<th>Upper: (t) (10df)</th>
<th>(t) (0.05±10df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{maxcalc})</td>
<td>65.152</td>
<td>66.136</td>
<td>1.8125</td>
</tr>
<tr>
<td>(T_{maxcalc})</td>
<td>47.762</td>
<td>49.854</td>
<td></td>
</tr>
<tr>
<td>(\text{AUC}_{last})</td>
<td>28.963</td>
<td>31.949</td>
<td></td>
</tr>
<tr>
<td>(\text{AUC}_{tot})</td>
<td>28.193</td>
<td>33.017</td>
<td></td>
</tr>
<tr>
<td>(\text{AUC}_{0-\infty})</td>
<td>23.136</td>
<td>23.834</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Analysis of variance for the evaluation of different effects in test and reference formulations, using logarithmic transformed data

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter</th>
<th>ANOVA ((p) - value)</th>
<th>Variation Source</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation</td>
<td>Period</td>
<td>Subject</td>
</tr>
<tr>
<td>(C_{maxcalc})</td>
<td>0.6336</td>
<td>0.3202</td>
<td>0.9528</td>
</tr>
<tr>
<td>(\text{AUC}_{last})</td>
<td>0.1662</td>
<td>0.3362</td>
<td>0.883</td>
</tr>
<tr>
<td>(\text{AUC}_{0-\infty})</td>
<td>0.734</td>
<td>0.1003</td>
<td>0.6716</td>
</tr>
</tbody>
</table>

Table 10: Wilcoxon sign rank test for \(T_{max} \)

<table>
<thead>
<tr>
<th>Ranks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Sum of Ranks</td>
</tr>
<tr>
<td>Ranks (Negative)</td>
<td>6²</td>
</tr>
<tr>
<td>Ranks (Positive)</td>
<td>6²</td>
</tr>
<tr>
<td>Ties</td>
<td>0²</td>
</tr>
<tr>
<td>Sum</td>
<td>12</td>
</tr>
</tbody>
</table>

a. Test < standard
b. Test > standard
c. Test = standard
Bioequivalence assessment
Various bioequivalence parameters were compared for test (F4) and reference formulations i.e. AUC\textsubscript{tot}, AUC\textsubscript{a..}, C\textsubscript{max} and T\textsubscript{max}, using two way ANOVA and aby Schirmann’s two one sided t test. 90% confidence interval (CI) value was used for trial and comparator. If AUC\textsubscript{tot}, AUC\textsubscript{a..}, C\textsubscript{max} and T\textsubscript{max} fell between 0.8-1.25 for natural log (ln) transformed, and for non-log transformed data values lies between 0.8-1.20, then products are considered bioequivalent. In present study the mean log-transformed and non-transformed values of above parameters with 90% CI were found within the acceptable range as shown in table 7. Bioequivalence assessment was also in agreement with Schirmann’s two one-sided t test as shown in table 8. Analysis of variance was used for the evaluation of formulation, period, subject and sequence effects for the ratio of C\textsubscript{max}, AUC\textsubscript{a..} and AUC\textsubscript{a.a.} values of trial and reference formulations, using logarithmic transformed data with 90% CI are shown in table 9.

DISCUSSION
In the present study a simple and reproducible reverse phase HPLC procedure has been utilized for the assessment of active compound in human plasma. For specificity study no interfering peaks were detected and method was found selective linear and sensitive in 50-0.05µg.mL-1 range. For system suitability test % RSD for retention time were (0.47), tailing factor (0.75), peak area (1.02) and theoretical plates (1.14). The intraday and interday accuracy of 50, 25, 12.5 and 1.56µg.mL-1 were from99.14%-100.55%. Several other techniques were also reported in literature for the estimation of diclofenac potassium in plasma by different investigator (Francis \textit{et al.}, 2011). But due to the complex solvent systems, high cost of equipments, complicated extraction procedures of sample preparation make them unsuitable for routine practice. This modified procedure was applied successfully for the estimation of active compound in plasma, which was further used for calculation of various pharmacokinetic parameters.

In this study both compartmental and noncompartmental pharmacokinetic parameters were estimated using Kinetta 4.4.1 (table 5 and 6). No significant difference was found in the mean AUC\textsubscript{a.a.} for the reference and test formulations. In present study using compartmental analysis average AUC values of reference brand and test (F4) were found to be 4.972±0.113 and 4.989±0.119 mg/L-1h (table 5). In non compartmental method, for reference and F4 formulation AUC\textsubscript{tot} (4.728±0.069 mg/L-1h; 4.780±0.078 mg/L-1h) and AUC\textsubscript{total} (5.015±0.088 mg/L-1h; 5.10±0.086 mg/L-1h). Average values for reference of calculated C\textsubscript{max} (1.303±0.098µg/mL) and T\textsubscript{max} (1.094±0.011 hr) and for F4 product of calculated C\textsubscript{max} (1.306±0.087µg/mL) and T\textsubscript{max} (1.099±0.015 hr) were in accordance of previously reported literature (Kowalski \textit{et al.}, 2010; Bele and Derle, 2012).

The Cl (mean clearance) and V\textsubscript{z} (volume of distribution) values of reference (10.061±0.235mL/h/kg; 61.555±8.283 L) and test (10.28±0.249mL/h/kg and 59.733±3.530L) formulations were comparable. Rate constants k\textsubscript{a} and K\textsubscript{el} found to be (reference, 2.288±0.329h-1 and 0.441±0.071h-1 respectively; test, 2.053±0.368h-1 and 0.475±0.085h-1 respectively). Similarly absorption and elimination half lives were T\textsubscript{1/2a} (reference, 0.310±0.053hr; test, 0.349±0.071hr), T\textsubscript{1/2Kel} (reference, 1.603±0.205h; test, 1.498±0.2372h). While other compartmental parameters including T\textsubscript{amb} α, β, T\textsubscript{1/2abs} distribution (T\textsubscript{1/2g}), disposition (T\textsubscript{1/2d}), K\textsubscript{a}, and K\textsubscript{21} were also estimated (table 5).

Similarly values of t\textsubscript{1/2} (1.0-2.5 hrs) and K\textsubscript{a} (0.2-0.9 hrs-1) for diclofenac potassium were also reported in various literature (Marzo \textit{et al.}, 2000). Scientists determined the terminal half lives of diclofenac potassium (12.5mg) was found to be (0.8±0.2 hr) and 25mg (0.9±0.3 hr) (Burkhard \textit{et al.}, 2005). In another investigation absorption rate constant (K\textsubscript{a}) and K\textsubscript{el} of diclofenac potassium were found to be 0.362±2.332, 0.394±4.307, h-1 (Mahmood \textit{et al.}, 2010). Also other noncompartmental parameters were also analyzed as shown in (table 6). Also two-way ANOVA test was used for the assessment of F4 and reference products. Different parameters i.e. subject, formulation, sequence and the period effects were considered using Latin Square ANOVA for bioequivalence evaluation (table 9). Multivariate investigation revealed the absence of formulation, period, subject and sequence effects for C\textsubscript{max}, AUC\textsubscript{a..}, AUC\textsubscript{a.a.} values of trial and reference formulations, using logarithmic transformed data with 90% CI are shown in table 9.

In this investigation, the geometric mean values of C\textsubscript{max} for reference (1.294±1.008) and test (1.295±1.0068) formulation, T\textsubscript{max} for reference (1.093±1.0097) and test (1.098±1.013) formulation, AUC\textsubscript{a..} for reference (4.972±0.1134) and test (4.989±0.119) formulation, AUC\textsubscript{a.a.} for reference (4.727±1.016) and test (4.779±1.016) formulation, AUC\textsubscript{tot} for reference (5.015±1.017) and test (5.104±1.017) formulation for log transformed data was shown in table 7. Also the geometric mean ratio of (Test/Reference) for C\textsubscript{max} (1.0059), T\textsubscript{max} (1.00479), AUC\textsubscript{a..} (1.011), AUC\textsubscript{a.a.} (1.011) and AUC\textsubscript{tot} (1.017).

Similarly 90% CI values were in order of C\textsubscript{max} (0.994-1.007), T\textsubscript{max} (0.996-1.013), AUC\textsubscript{a..} (0.986-1.020), AUC\textsubscript{a.a.} (0.997 - 1.024) and AUC\textsubscript{tot} (1.004-1.031). The Schirmann’s two one sided t test also inveterate the results of BE as shown in table in 8.

Similarly Basmenj \textit{et al.}, 2011 carried out the bioequivalence study of two brands of diclofenac sodium. Results showed 90 % CI for the log transformed values for C\textsubscript{max}, AUC\textsubscript{a..}, and AUC\textsubscript{a.a.} following FDA and EMEA guidelines. On non log transformed data analysis of variance was also executed with the 90% confidence interval (CI) limit and P>0.05 for non significance which
were then evaluated by using geometric means with the range from 0.8-1.2. Results of log and non-log transformed data were presented in table 7. For the evaluation of T\text{max}, Wilcoxon Sign Rank test was also carried out using SPSS 20.0 (SPSS Inc). Table 10 showed no carry over effect and the results of rank sum were found to be <13. The relative bioavailability of F4 was found to be 101.27%.

It was concluded that both formulations were found to be equivalent and comparable related to their rate and extent of absorption, having comparable plasma concentration time profile. Hence no prejudice in therapeutic activity can be warranted.

ACKNOWLEDGEMENTS

Authors would like to thanks Faculty of Pharmacy, Ziauddin University and reported that no conflict of interest and no funding were collected on this work.

REFERENCES

