Assessment of cardiovascular disease risk in depressed women of reproductive and menopausal age

Saima Akhtar¹, M Iqbal Afridi² and Samina Bano¹*
¹Department of Biochemistry, Clinical Biochemistry and Psychopharmacology Research Unit, University of Karachi, Karachi, Pakistan.
²Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi, Pakistan

Abstract: It is well documented that depression increases the risk of cardiovascular disease (CVD). Women of age 55 and younger with depression are more likely to have CVD. The present study aims to investigate CVD risk in depressed women of reproductive age (RA) and menopausal age (MA). Adult women of RA and MA were divided into two groups; healthy and depressed. Women were screened for depression (ICD-10 criteria) at outpatient department of local psychiatric hospital. Fasting serum cortisol, estradiol and lipid profile levels were determined. Data was analyzed using two-way ANOVA followed by Newman’s Keuls q-test. Total cholesterol (TC), low-density lipoproteins (LDL) and triglycerides (TGs) were raised in MA women however high density lipoprotein (HDL) and estradiol were lower as compared to RA women. Depressed RA women showed increased TC, LDL and HDL but decreased estradiol as compared to healthy women of similar age group. MA depressed women showed increased TC and LDL but decreased HDL and estradiol as compared to healthy controls. We found that MA depressed women had low HDL and estradiol as compared to RA depressed women. Circulating cortisol levels were increased in both depressed RA and MA women compared to respective healthy controls. Low HDL/LDL ratio was found in both healthy and depressed MA women when compared with respective RA women. A significant negative correlation of estradiol and cortisol was found in depressed RA women. It is concluded that low HDL/LDL ratio and hypercortisolemia in both healthy and depressed MA women make them more vulnerable to CVD.

Keywords: Depression; cortisol; menopause; cholesterol; cardiovascular disease.

INTRODUCTION

Estrogen and progestin play pivotal role in the life of women, influencing serotonergic neurotransmission and mood change (Bethea et al., 2002). Low estrogen levels have been associated with depression in menopause. The pathophysiology of major depression also involves impairment in negative feedback control of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in an increase in stress hormone (cortisol) levels. Depression is termed as a life threatening disorder, characterized by hypercortisolemia. Women with depression exhibit a higher degree of HPA axis activation, and the extent of dysregulation of HPA axis is greatest during menopause, when women suffer estrogen depletion (Weizman et al., 2012).

The effect of different types of stress on cholesterol concentration is of increasing awareness and significance. Several researchers have found that concentration of cholesterol tend to be significantly greater during stress than other times (Wertlake et al., 1958). The metabolic syndrome (MS) is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. Hormonal changes associated with menopause cause a major effect on metabolism of plasma lipids and lipoproteins. Investigators have shown altered lipid profile in menopausal women who are estrogen deficient (Swapnali et al., 2011). Variation in estrogen concentration is encountered in different stages linked to the reproductive life of women and decrease levels of estrogen are connected with mood variations involving depression in women (McEwen and Alves, 1999). Dyslipidemia is a significant source of cardiovascular disease (CVD), which is consecutively the general cause of men and women morbidity (Castelli, 1988). The incidence of cardiovascular disease increases after menopause, since as women age they are more and more exposed to high numbers of major CVD risk elements, including an inadequate lipid profile, mental stress and also bodyweight (Gupta et al., 2007). The present study is designed to evaluate CVD risk in reproductive age (RA) and menopausal age (MA) women suffering from depression.

MATERIAL AND METHODS

This study was carried out from 2012-2014 at Clinical Biochemistry and Psychopharmacology Research Unit, Department of Biochemistry, University of Karachi. The subjects (n=100) were categorized into reproductive age (RA) women (n=50) having regular menstruation aged between 18-40 years and menopausal age (MA) women...
Assessment of cardiovascular disease risk

(n=50) with amenorrhea over one year aged between 52-65 years. The subjects were subcategorized into two groups, healthy and depressed, who met ICD-10 Criteria for depression at Psychiatry ward (without any other serious pathology and were free from any type of medication) were randomly selected, after an informed consent and ethical clearance from the ethical committee of Jinnah Postgraduate Medical Centre, Karachi.

Random fasting venerection (overnight fast of 12 hours) was carried out between 9:00-9:30 am to draw 10cc. of blood. The blood samples were centrifuged at 3000 rpm for 15 minutes. Serum was obtained and stored at -20°C until analysis. Serum total cholesterol (TC), high density lipoprotein (HDL) and triglycerides (TGs) concentrations were determined by Randox® kit. Cortisol was measured using an Accu Bind ELISA test kit catalog number: 3625-300 by Monobind Inc USA. Estradiol was measured using an enzyme immunoassay test kit catalog number: BC-111 by Bio Check. Low-density lipoproteins (LDL) were calculated using formula.

Data was analyzed by two way ANOVA followed by Newman-Keuls statistics. Correlations between continuous variables were calculated using Pearson correlation coefficients. The level for significance was taken as p < 0.05.

RESULTS

Table 1 shows alteration in lipid profile in healthy and depressed RA and MA women. Data analyzed by two-way ANOVA, shows effect of age was significant on TC, HDL-C, LDL and TGs F=53.65 (p<0.01), F=188.55(p<0.01), F=75.96 (p<0.01) and F=80.44 (p<0.01) respectively. Effect of disease was significant on TC F=36.65 (p<0.01), HDL F=50.15(p<0.01) and LDL F=74.15 (p<0.01). There was no effect of disease on HDL and TGs levels. The interaction between the two (age x disease) was significant on HDL-C F=24.06 (p<0.01) and LDL-C F=6.49 (p<0.05).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Healthy Reproductive Age</th>
<th>Menopausal Age</th>
<th>Depressed Reproductive Age</th>
<th>Menopausal Age</th>
<th>Two-Way ANOVA (df, 1, 96)</th>
<th>Age</th>
<th>Disease</th>
<th>Age × Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>165.84±4.48</td>
<td>93.64±6.14**</td>
<td>187.04±2.99†</td>
<td>234.96±6.15***††</td>
<td>53.65 p<0.01</td>
<td>36.65 p<0.01</td>
<td>3.62 N.S</td>
<td></td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>53.12±1.04</td>
<td>43.44±1.86**</td>
<td>58.5±0.44††</td>
<td>38.08±0.31IIII</td>
<td>188.55 p<0.01</td>
<td>0.0005 NS</td>
<td>24.06 p<0.01</td>
<td></td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>75.8±1.78</td>
<td>101.28±4.72**</td>
<td>100.84±4.06††</td>
<td>148.24±5.24III**</td>
<td>75.96 p<0.01</td>
<td>74.15 p<0.01</td>
<td>6.49 p<0.01</td>
<td></td>
</tr>
<tr>
<td>TGs (mg/dl)</td>
<td>85.04±4.07</td>
<td>131.48±5.92**</td>
<td>94.0±5.43</td>
<td>139.76±4.97III**</td>
<td>80.44 p<0.01</td>
<td>2.81 N.S</td>
<td>0.004 NS</td>
<td></td>
</tr>
</tbody>
</table>

Experimental details are given in materials and method section. All values are means ± SEM n=25 in each group. The significance of the differences is indicated by, *p<0.05, **p<0.01 when menopausal age women were compared from respective controls, †p<0.05, ††p<0.01 when depressed women were compared from similar age healthy controls by Newman-Keuls Q statistics following two-way ANOVA. Abbreviations: HDL-C=high density lipoprotein Cholesterol; LDL-C=low-density lipoproteins Cholesterol and TGs=triglycerides N.S. = non-significant.

Fig. 1: Shows HDL/LDL ratio in healthy and depressed women of Reproductive age (RA) Menopausal age (MA) women. Values are means ± S.E.M (n=25) the significance of differences is indicated by **p<0.01 when compared from respective control subjects, ††p<0.01 when compared from similar age healthy controls by Newman-keuls Q statistics following two-way ANOVA.
Fig. 1 shows the ratio between healthy and depressed RA and MA women. Data analyzed by 2-way ANOVA indicates that the effect of age $F=317.26$ ($p<0.01$) and disease $F=7.53$ ($p<0.01$) was significant. But age x disease interaction was not significant.

Fig. 2 shows serum cortisol levels in normal healthy and depressed RA and MA women. Data analyzed by two way ANOVA followed by Newman-Keuls q-test. The results show that the effects of age were significant on cortisol $F=174.53$ ($p<0.01$). However the effect of disease $F=999.93$ ($p<0.01$) and age x disease interaction $F=63.51$ ($p<0.01$) was significant.

Fig. 3 shows serum estradiol concentrations in normal and depressed RA and MA women. Data analyzed by two way ANOVA shows that effect of age was significant on estradiol $F=544.28$ ($p<0.01$). Whereas the effect of
Assessment of cardiovascular disease risk

Fig. 4 (a, b, c, d) shows correlation of estradiol and cortisol in healthy and depressed RA and MA women. Results indicate significant negative correlation of estradiol and cortisol (r=0.41, p=0.04) only in depressed RA in contrast correlations of estradiol and cortisol in healthy and depressed MA and healthy RA was not significant.

DISCUSSION

The prevalence of the metabolic syndrome (MS) increases with menopause and may partially explain the apparent acceleration in CVD after menopause. Altered lipid profile makes MA women susceptible to atherosclerosis, the major cause of death for nearly 53% of all deaths in women over 50 years of age (Shilpa et al., 2001). The present study (table 1) shows higher TC, LDL, triglycerides levels with low HDL and estradiol levels (fig. 3) in healthy MA women when compared with healthy RW controls, results are in accordance with findings as reported earlier (Ushiroyama et al., 1993). Increased body mass of MA women is because of greater fat deposition with elevated release of free fatty acids into the blood circulation, providing substrate for hepatic triglyceride in addition to triglyceride rich lipoprotein production (Tanko et al., 2005). Menopause causes decreases of HDL concentrations. Deficiency of estrogen in MA women may have greatest activity of post heparin hepatic lipase and promotes the uptake of HDL and also enhances the catabolism of HDL, reducing plasma HDL levels (Arora et al., 2006). According to Arca et al., (1994) decrease in estrogen secretion with the cessation of ovarian function contributes to higher LDL level in MA women. Estrogen increases hepatic synthesis of LDL receptor for Apo-β resulting in increased LDL-C uptake decreasing circulating LDL levels (Wild et al., 1995). Furthermore decreased gonadal activity decreases LDL
findings are consistent with earlier report (fig. 1) that disturb and severe hot flushes. On the other hand, present levels of cortisol have been linked with poor health with stabilize night time sleep (Moe et al. 2001). Increased levels of cortisol have been linked with poor health with lower bone density in aging women, memory loss, sleep disturb and severe hot flushes. On the other hand, present findings are consistent with earlier report (fig. 1) that cortisol levels are high in depressed MA as compared to healthy MA women (Bhagwagar et al., 2005). Cortisol is an important factor inducing tryptophan 2, 3 dioxygenase, the first rate limiting enzyme of tryptophan oxidative metabolisms reducing available tryptophan for serotonin synthesis (Green and Curzon, 1968). Females are at higher risk of major depression, as a result of heightened sensitivity to intense hormonal fluctuations. Cortisol is synthesized from cholesterol as its essential precursor. It is equally possible that elevated cholesterol may cause an elevation in cortisol concentration. Our results indicate that MA women have high level of cortisol in depression as compared to depressed RA. Depressed women exhibit hypercortisolism and a higher degree of HPA axis activation than depressed women and the extent of dysregulation of the HPA axis is greatest during the menopause (Shin et al., 2008). Interestingly, present result shows that increased level of cortisol in depressed RW than healthy controls is in agreement with that reported earlier (Bano et al., 2004). In post-menopausal women increased cortisol level is associated with known risk factors for cardiovascular disease, such as insulin resistance and decreased HDL-cholesterol level (Cagnacci et al., 2011).

As regard to correlation, present findings (fig. 4 a, b, c, d) show that significant negative correlation of estradiol and cortisol (r=0.41, P=0.04) in depressed RA. The reason could be due to estrogens stimulate the HPA axis. In addition, HPA axis responsiveness is greater in women that in men (Gallucci et al., 1993). Estrogen directly stimulate CRH gene promoter and the central nor adrenergic (norepinephrine system) which may helps to explain adult women slight hypercortisolism increases in effective anxiety, eating disorder, mood cycles and vulnerability to autoimmune and inflammatory disease. All of which follow estradiol concentrations fluctuation. Estradiol down regulates glucocorticoids receptor binding in the anterior pituitary, hypothalamus and hippocampus. This tends to increase HPA axis activity by interfering with glucocorticoids negative feedback whereas progesterone opposes these effects (Peiffer et al., 1991). Thus alterations in estradiol levels during normal menses perimenopause and menopause alter the regulatory feedback loop and adaptation overtime developed as a new equilibrium established in the relationship. Overtime these changes increase the incidence of mood alteration eating disorders, anxiety, depression weight changes and inflammatory and immune disease.

CONCLUSION

It is concluded that both RA and MA depressed women have elevated levels of cortisol. However both healthy and depressed MA women have high risk to develop CVD due to dyslipidemia and low HDL/LDL ratio. Menopause is associated with an increase in MS prevalence. It is recommended to screen the MS component especially in depressed MA women before prescribing the antidepressant therapy, considering the class of antidepressants that may cause the least modulations of the lipid milieu. In addition to choosing an appropriate antidepressant, the clinician should check the lipid profiles and related parameters these patients on a regular basis as MA depressed women are more vulnerable to cardiac mortality.

Saima Akhtar et al
REFERENCES

