Effect of aqueous extract of *Dicranopteris linearis* leaves against paracetamol and carbon tetrachloride-induced liver toxicity in rats

Noor Aisyah Ismail¹, Nor Syafawati Shamsahal Din¹, Siti Syariah Mamat¹, Zalina Zabidi¹, Wan Noraziemah Wan Zainulldin¹, Farah Hidayah Kamisan¹, Farhana Yahya¹, Norhafizah Mohtarrudin², Mohd Nasir Mohd Desa¹ and Zainul Amiruddin Zakaria¹,³*

¹Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
²Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
³Pharmacogenomics Center, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia

Abstract: The present study aimed to determine the hepatoprotective activity of *Dicranopteris linearis* L. (family Gleicheniaceae) leaf aqueous extract (DLAE) using two models of liver injury in rats. Rats were divided into ten groups (n=6) and received dH 2O (negative control), 200 mg/kg silymarin (positive control) or DLAE (50, 250 and 500 mg/kg) orally once daily for 7 consecutive days and on the 8th day subjected to the hepatotoxic induction either using carbon tetrachloride (CCl₄) or paracetamol (PCM). The bloods and livers were collected and subjected to biochemical and microscopical analysis. From the data obtained, only the highest dose of DLAE significantly (p<0.05) reduced the ALP, ALT and AST levels in CCl₄ and PCM-induced hepatotoxic rats while the other doses caused significant (p<0.05) reduction only in the levels of ALT and AST. The histological results obtained were in line with the biochemical analysis wherein reduction in the CCl₄ and PCM-induced tissue formation of necrosis, steatosis and inflammation occurred in a dose-dependent manner. In conclusion, the DLAE possesses hepatoprotective activity, which could be attributed to its free radicals scavenging and antioxidant activities, and high flavonoids content. Thus, in-depth studies regarding the hepatoprotective activity of DLAE are warranted.

Keywords: *Dicranopteris linearis*; Gleicheniaceae; in vivo; hepatoprotective activity; aqueous extract; leaves.

INTRODUCTION

Acute liver failure can results from toxic liver damage by drugs or poisons with oxidation process has been partly associated with the hepatic injury mediated by those agents (Adewusi and Afolayan, 2010). Despite extensive improvement in the field of modern medicine, it offers little benefit, particularly, towards the management of acute liver failure (Wagh *et al.*, 2010; Taub 2003). Furthermore, the incidence of relapse as well as side effects and development of tolerance upon uses of standard drugs on clinical evaluation make their efficacy arguable. This has been the basis for the development of new plant-based drugs, which include plant-based hepatoprotective agents (Mard *et al.*, 2008). One of the plants that have been reported to possess several pharmacological activities and is presently being studied in our laboratory for its hepatoprotective effect is *Dicranopteris linearis* L. Despite its limited usages within the Malay traditional medicine (Zakaria *et al.*, 2010), this plant, which is called ‘pokok resam’ by the Malay and belongs to the family Gleicheniaceae, has been proven to possess several pharmacological properties (Zakaria *et al.*, 2010; Zakaria *et al.*, 2006; Zakaria *et al.*, 2008; Zakaria *et al.*, 2011a). Of those pharmacological activities, the mechanisms of anti-inflammation, antioxidation and anti-proliferation are known to be interrelated to each other as well as to the hepatoprotective mechanism (Dash *et al.*, 2007; Chattopadhyay 2003). Based on these facts, the potential of *D. linearis* leaf aqueous extract (DLAE) to exert hepatoprotective activity was investigated in the present study using various rat models.

MATERIALS AND METHODS

Plant material and preparation of the aqueous extract (DLAE)

The leaves of *D. linearis* were collected between July and August, 2010 from its natural habitat around Serdang, Selangor, Malaysia. A new voucher specimen, IR 0128/11, was deposited at the Herbarium of the Institute of Bioscience (IBS), Universiti Putra Malaysia. The preparation of DLAE was performed as previously described (Zakaria *et al.*, 2008; Zakaria *et al.*, 2011a). Eighty gram (80 g) of dried powdered leaves was soaked for 72 h in distilled water (dH₂O) in the ratio of 1:20 (w/v) at room temperature. After 72 h, the aqueous supernatant was collected and the residue was soaked again for another two times. The supernatant was pooled together and freeze-dried to yield approximately 15.7 g of dried DLAE (percentage yielded was ≈19.5%).

Corresponding author: e-mail: dr_zaz@yahoo.com

Animals used
Adult male Sprague-Dawley rats (weighed 180-200 g) were adopted in the present study and the animal ethics approval was obtained from the Animal Ethics Committee, UPM (reference no: UPM/FPSK/PADS/BR-UUH/00383) (Zakaria et al., 2008).

Pharmacological study
Acute toxicity study in rats
The extract was subjected to the acute toxicity study using a single dose administration of 5000 mg/kg (p.o) prior to the hepatoprotective study (Mohamed et al., 2011).

Hepatoprotective assay
DLAE, in the dose range in of 50, 250 and 500 mg/kg, were assayed against the paracetamol (PCM; 3 g/kg)- and carbon tetrachloride (CCl₄; 0.15 ml/kg)-induced liver toxicity models (Zakaria et al., 2011c). The hepatoprotective activity of extract was compared against dH₂O (vehicle group) and silymarin (200 mg/kg; standard drug).

STATISTICAL ANALYSIS

The results are presented as Mean ± Standard Error of Mean (S.E.M), and analyzes using the one-way analysis of variance (ANOVA) test with Dunnet post-hoc test with P<0.05 as the limit of significance.

RESULTS

Acute toxicity study
No signs and symptoms of toxicity and mortality were detected in rats receiving 5000 mg/kg DLAE (p.o) with normal behavior pattern observed.

Effects of DLAE on the blood liver enzymes level
The effects of DLAE on the levels of three rat’s liver enzymes (ALP, AST and ALT) following induction with CCl₄ or PCM are shown in Table 1. The two inducers caused significant (p<0.05) liver toxicity in the treated rats as indicated by remarkable increase in the level of these enzymes when compared to the normal rats (control). Pretreatment with 200 mg/kg silymarin (positive control) followed by CCl₄ or PCM resulted in significant (p<0.05) decrease in the level of ALP, ALT and AST. Interestingly, DLAE also exerted significant (p<0.05) hepatoprotective effect against CCl₄ and PCM as indicated by reduction in the levels of ALP, ALT and AST.

Histopathological study
Histopathological studies of the livers removed from CCl₄ (fig. A2) and PCM (fig. B2) -induced rats pretreated with dH₂O demonstrated severe damage to the architecture of the liver with necrosis of hepatocytes, infiltration of leukocyte and steatosis observed throughout the tissues when compared to the normal untreated tissues (fig. A1 and B1). The 200 mg/kg silymarin reversed the hepatotoxic effects of CCl₄ and PCM leading to the recovery of the liver towards its normal architecture (fig. A3 and B3). Interestingly, the DLAE, at the dose of 50-500 mg/kg, reversed the hepatotoxic effect of CCl₄ (fig. A4-6) and PCM (fig. B4-6) when compare to the respective toxic liver (fig. A2 and B2). The biochemical findings were, therefore, supported by the microscopical observations and the histopathological scoring (table 1).

DISCUSSION

D. linearis leaf exhibited antinociceptive, anti-inflammatory and antipyretic (Zakaria et al., 2006; Table 1: Effects of DLAE on the liver enzymes following CCl₄- and PCM-induced hepatotoxicity in rats

<table>
<thead>
<tr>
<th>Hepatotoxicity models</th>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>ALP</th>
<th>ALT</th>
<th>AST</th>
<th>Histological Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>dH₂O</td>
<td>-</td>
<td>94.90±3.19</td>
<td>77.25±7.428</td>
<td>72.55±2.95</td>
<td>-</td>
</tr>
<tr>
<td>CCl₄-induced</td>
<td>dH₂O</td>
<td>-</td>
<td>316.83±16.04<sup>a</sup></td>
<td>991.77±26.57<sup>b</sup></td>
<td>494.67±28.30<sup>c</sup></td>
<td>7.2±0.8</td>
</tr>
<tr>
<td></td>
<td>Silymarin</td>
<td>200</td>
<td>254.08±35.28</td>
<td>720.32±20.70<sup>a</sup></td>
<td>204.43±31.72<sup>b</sup></td>
<td>4.0±0.0<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>DLAE</td>
<td>50</td>
<td>292.67±17.76</td>
<td>328.02±16.26<sup>a</sup></td>
<td>385.27±9.30<sup>d</sup></td>
<td>6.8±0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>242.33±9.94</td>
<td>144.33±12.89<sup>a</sup></td>
<td>236.23±19.99<sup>d</sup></td>
<td>6.5±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>244.50±14.92</td>
<td>168.32±15.97<sup>a</sup></td>
<td>188.40±15.39<sup>d</sup></td>
<td>4.7±0.3<sup>g</sup></td>
</tr>
<tr>
<td>PCM-induced</td>
<td>dH₂O</td>
<td>-</td>
<td>312.83±29.95<sup>c</sup></td>
<td>861.33±27.48<sup>d</sup></td>
<td>864.13±37.28<sup>g</sup></td>
<td>8.3±0.4</td>
</tr>
<tr>
<td></td>
<td>Silymarin</td>
<td>200</td>
<td>161.00±10.95<sup>b</sup></td>
<td>412.13±32.41<sup>b</sup></td>
<td>612.13±17.28<sup>b</sup></td>
<td>4.5±0.5<sup>y</sup></td>
</tr>
<tr>
<td></td>
<td>DLAE</td>
<td>50</td>
<td>307.17±17.98</td>
<td>561.40±18.29<sup>b</sup></td>
<td>301.47±14.95<sup>b</sup></td>
<td>7.3±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>330.00±18.063</td>
<td>1063.87±13.45<sup>b</sup></td>
<td>411.62±28.25<sup>b</sup></td>
<td>7.7±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>215.67±32.23<sup>b</sup></td>
<td>485.35±16.73<sup>b</sup></td>
<td>272.47±42.06<sup>b</sup></td>
<td>4.0±0.8<sup>z</sup></td>
</tr>
</tbody>
</table>

Values are expressed as means ± S.E.M; n=6
^{a,b,c} Data differed significantly (p<0.05) when compared to the respective column within the normal group
^dData differed significantly (p<0.05) when compared to the respective column within the CCl₄-induced group pretreated with dH₂O
^{e,f,g}Data differed significantly (p<0.05) when compared to the respective column within the normal group
^hData differed significantly (p<0.05) when compared to the respective column within the PCM-induced group pre-treated with dH₂O
^{x,y}Data differed significantly (p<0.05) when compared to the dH₂O-treated group induced with CCl₄ or PCM
Zakaria et al., 2008), and cytotoxic and antioxidant (Zakaria et al., 2011a) activities. In an attempt to further establish the pharmacological profile of D. linearis leaf, we study the hepatoprotective effect of DLAE against the CCl₄- and PCM-induced liver toxicity models. In the present study, we demonstrate the potential of DLAE as hepatoprotective agent against CCl₄- and PCM-induced liver toxicity.

To speculate on the possible mechanisms of action responsible for DLAE hepatoprotective activity, it is necessary to understand the different mechanism of liver toxicity triggered CCl₄ and PCM. The CCl₄ toxicity could be associated with the binding of its active metabolite, trichloromethyl radicals, with polyunsaturated fatty acid (PUFA) to form alkoxy and peroxy radicals, which resulted in the induction of lipid peroxidation (Weber et al., 2003; Feroz Khan et al., 2009). Lipid peroxidation is a process associated with damage in cell membrane and disruption of normal enzymes’ activity by free radicals that finally induce hepatic injury or necrosis (Popovic et al., 2006). On the contrary, the mechanism of toxicity induced by PCM could be attributed to the oxidative action of its toxic metabolite, N-acetyl-p-benzoquinone-imine (NAPQI). The NAPQI binds to DNA, proteins, and cellular proteins to produce protein adducts (Somchit et

![Fig. 1](image-url)
al., 2005) that contributes to the dysfunction and death of hepatocytes, and, finally, leading to liver necrosis (Zakaria et al., 2011b). Based on the above facts, the free radicals and oxidative processes are two of the possible factors that contribute towards the development of hepatotoxicity. Therefore, it is postulated that any extracts/compounds bearing free radical scavenging and antioxidant activities may also exert hepatoprotective agents. Interestingly, DLAE has been proven to possess free radical scavenging and antioxidant activities (Zakaria et al., 2011a). These activities might work synergistically with the extract’s anti-inflammatory and antiproliferative activities to produce the observed hepatoprotective activity. Furthermore, the extract also contained high total phenolic content (TPC), which has been reported to contribute to the extracts antioxidant and hepatoprotective activities (Weber et al., 2003; Feroz Khan et al., 2009; Desmarchelier et al., 1998; Hort et al., 2008). The aqueous extract of D. linearis leaf has been reported to contain flavonoids, tannins and saponins (Zakaria et al., 2011a). These classes of compounds have been reported to exert hepatoprotective activity and, thus, suggested to contribute to the observed hepatoprotection of DLAE (Popovic et al., 2006; Somchit et al., 2005; Zakaria et al., 2011b; Desmarchelier et al., 1998; Hort et al., 2008).

CONCLUSION

The present study demonstrated that the leaf of D. linearis possesses hepatoprotective activity against PCM and
CCl4-induced liver toxicity, which could be attributed, partly, to the extract’s free radical scavenging and antioxidant activities and high phenolics and flavonoids contents. Thus, further extensive studies are warranted to determine the responsible bioactive compound(s) with hepatoprotective activity.

ACKNOWLEDGEMENTS

This study was supported by the Science Fund Research Grant (Reference no. 06-01-04-SF1127) awarded by the Ministry of Science Technology and Innovation (MOSTI), Malaysia and the Research University Grant Scheme (Reference no. 04-02-12-2019RU) from the Universiti Putra Malaysia, Malaysia. The authors thanked the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia for providing the facilities to carry out this study.

REFERENCES

