Educational Article

Effects of handpiece speed on the performance of undergraduate dental students in preclinical training

Mothanna Alrahabi, PhD a, Muhammad Sohail Zafar, PhD a, * and Naseer Ahmed, PhD b

a Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia
b Department of Engineering, CECOS Institute of IT and Emerging Science, Peshawar, KPK, Pakistan

Received 6 November 2014; revised 28 December 2014; accepted 31 December 2014; Available online 9 February 2015

Abstract

Objective: Low-speed high-torque handpieces are popular for the pre-clinical training of dental students. However, in clinical practice, high-speed air turbine handpieces are commonly used. This dissimilarity creates a gap between pre-clinical and clinical training skills. The current study sought to evaluate the effects of the use of high-speed and low-speed handpieces by dental students during their pre-clinical training.

Methods: Twenty-one undergraduate dental students at the College of Dentistry of Taibah University participated in this study. Each student was asked to prepare Class I cavities using high-speed air turbine and low-speed/high-torque handpieces. The time required for cavity preparation was recorded by the authors. The prepared cavities were evaluated for quality and skill using a six-point scale. The data were statistically analysed with paired t and Mann–Whitney tests.

Results: There was no significant difference in cavity preparation time between the low-speed and high-speed handpieces (538.29 and 483.76 s, respectively). The evaluations of the cavities revealed no difference in the quality of preparations between the low- and high-speed handpieces. Additionally, no significant difference in the surface roughness of the preparations was observed.

* Corresponding address: Assistant Professor, Department of Restorative Dentistry, College of Dentistry, Taibah University, P.O. Box 2898, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
E-mail: drsohail_78@hotmail.com (M.S. Zafar)
Peer review under responsibility of Taibah University.
Conclusions: The type of handpiece did not influence the learning capabilities of the undergraduate dental students in the preparation of class I cavities. This study did not observe any significant differences between the cavities that were prepared by our students using either high-speed or low-speed handpieces.

Keywords: Dental cavity preparation; Dental education; Handpiece speed; Undergraduate dental students

© 2015 The Authors. Production and hosting by Elsevier Ltd on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

There is a high level of demand for qualified dental clinicians and educators across the world. A number of factors, such as increases in the population, improved public awareness of dental care, and advancements in dental technologies and knowledge in dentistry, have further intensified the need for trained dental professionals. However, ensuring high quality dental education and training in practical skills for students is challenging.1,2 Practicing manual skills and perceptual abilities are essential in clinical dentistry practice.3 Preclinical operative dentistry modules contribute a large proportion of the credit/teaching hours that compose the dental curriculum.4 Dental education contributes a large proportion of the clinical dentistry module.9 These handpieces are used for the majority of clinical procedures involving fixed prosthodontics in pre-doctoral programs.9 These handpieces are highly popular due to specific benefits, including low cost, low weight, ease of repair, rapid cutting of the tooth structure, and a reduced risk of pulpal damage.10–12

In the majority of Middle Eastern Universities, the traditional teaching approach for operative dentistry pre-clinical training relies primarily on the use of low-speed handpieces. However, in the clinical stage, the majority of dental procedures (e.g., cavity and crown preparation) are performed with high-speed air turbine handpieces. Therefore, undergraduate dental students receive very limited exposure to the use high-speed air turbine handpieces prior to clinical sessions. This situation leads to a gap between the preclinical and clinical stages. The current study sought to evaluate the effects of the use of high-speed and low-speed handpieces by dental students during preclinical training. Additionally, the effects of handpiece speed on the undergraduate students’ abilities to learn operative procedures were examined.

Materials and Methods

This study was approved by the Research Ethics Committee of the College of Dentistry of Taibah University. An entire class of 21 students who were taking the “preclinical dentistry module” were informed about the study and all agreed to participate. All of the students were informed about the study design, their potential participation and the procedures for preparing conventional GV Black’s cavities (class I). Each student was provided with a pair of artificial lower right first permanent molar teeth (KaVo EWL model teeth, KaVo Dental GmbH & Co.KG). All KaVo model teeth are synthesized using food-resistant materials [i.e., no chemical interactions with food ingredients], and their hardnresses match that of human dentine.13 Natural dentin is a hard material with hardnresses that range from 0.4 to 0.9 GPa.14,15 Therefore, the learners experienced proprioceptions that were very similar to those that would be experienced with natural teeth, and there are no safety issues involved in the use of synthetic teeth. To standardize the research, each student was provided with similar teeth and instruments and a comfortable stress-free working environment. Each student was asked to cut a class I cavity using a turbine hand-piece (POWERtorque MULTIflex LUX Turbin 646B KaVo Dental GmbH & Co.KG) with continuous water spray [Group A] and using a low-speed handpiece with high-torque (INTRAflex LUX 2Uniterteil 2320 LN KaVo Dental GmbH & Co.KG) [Group B]. The cavity outlines included all occlusal pits and fissures with gently flowing curves and distinct cavo-surface margins. Conservative GV Black class I cavities should meet the criteria listed in Table 1).12

All students were provided with a dental mirror, probe, and millimetre-graduated periodontal probe to measure the depth, width and marginal width of the cavity. All preparations were completed using tungsten carbide burs with head lengths of 1.8 mm and tip diameters of 0.8 mm (ISO standard No. 330: Hager & Meisinger GmbH-Germany).12 Once the cavity preparations were completed, all teeth were collected, labelled with the study group and evaluated by the authors according to the predefined criteria (see Table 2). The data were analysed using the SPSS version 16 statistical software (SPSS Inc., Chicago, IL, USA) for Windows, and t-tests for paired samples and Mann–Whitney tests were applied.

Surface roughness measurement

The surface roughness analyses of the prepared class I cavities was performed using a previously described protocol.16 Briefly, a noncontact surface profile-meter (Bruker® 3D optical system; type ContourGT-K0) was used to scan the surfaces. This surface profilometer has a built-in sample
stage that can be moved physically in X, Y, and Z planes for final sample adjustment. This profilometer is equipped with a camera (20× mounted lens, single objective adapter). The roughness profiles of the walls and floors of the prepared cavities were analysed using the Vertical Scanning Interferometry (VSI) technique; hence, no destruction of the sample surfaces occurred. All teeth were cut vertically to access the walls and cavity floor without any obstruction from the undercuts. The prepared samples were attached to the top of the sample stage, and the X and Y positions were adjusted to bring the sample under the lens. The Z-axis was then adjusted to move the object into focus. Once satisfactory focus was attained, Vision64/C212 operation and analysis software was used to obtain the surface roughness profiles.

This machine is proficient in the measurement of characteristics at a resolution of 1 μm and can be calibrated for vertical and horizontal resolutions. There is a range of parameters that can be calculated using the software that includes profile or line roughness (abbreviated as Rq, Rs) and surface area roughness (abbreviated as Sq, Sa). The line roughness (Rq, Ra) has frequently been used to express the surface roughness (SR parameter paper). However, the latest 3-D non-contact profilometers are capable of measuring area roughness parameters (Sq, Sa) that are more accurate and a parameter for roughness profilometry. The line and surface area parameters can be expressed with the following equations:

\[R_q = \frac{1}{l} \int_0^l |Z(x)|dx \]

\[S_a = \frac{1}{A} \int_0^A |Z(x,y)|dxdy \]

where \(l \) is the length of line, and \(A \) is the area.

The collected data were analysed for the root mean squares of the surface roughness (\(S_q \)). Five measurements from each sample were obtained and averaged to acquire the final \(S_q \) values.

Results

Preparation time

The mean times required by the students to prepare the class I cavities were 538.29 s and 483.76 s with the low- and high-speed handpieces, respectively (Table 3). There was no significant difference in the means of the cavity preparation times between the low- and high-speed handpieces (p-value < 0.05).

Cavity evaluation

To evaluate the relationship between handpiece speed and cavity preparation quality, the two groups were compared in

Table 1: Parameters for the preparation of an ideal class I cavity.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline form</td>
<td>All occlusal pits and fissures; flowing curves and distinct cavo-surface margins</td>
</tr>
<tr>
<td>Cavity depth</td>
<td>1.5–2 mm</td>
</tr>
<tr>
<td>Cavity width</td>
<td>1–1.5 mm</td>
</tr>
<tr>
<td>Divergence of mesial/distal walls</td>
<td>(\leq 10^\circ)</td>
</tr>
<tr>
<td>Convergence of facial/lingual walls</td>
<td>Minimal occlusal convergence</td>
</tr>
<tr>
<td>Cavo-surface angle</td>
<td>80–100°</td>
</tr>
<tr>
<td>Marginal ridge width</td>
<td>At least 2 mm</td>
</tr>
<tr>
<td>Pulpal floor</td>
<td>Smooth and flat</td>
</tr>
</tbody>
</table>

Table 2: Evaluation criteria used to assess the prepared class I cavities.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Evaluation score</th>
<th>Code</th>
<th>Level</th>
<th>Grade description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline form</td>
<td>Proper</td>
<td>1</td>
<td>Unacceptable</td>
<td>Gross mistakes or great deviation from proper design</td>
</tr>
<tr>
<td>Cavity depth</td>
<td>1.5–2 mm</td>
<td>0.5</td>
<td>Moderate deviation</td>
<td><1.5 mm or >3 mm</td>
</tr>
<tr>
<td>Cavity width</td>
<td>1–1.5 mm</td>
<td>0</td>
<td>Unacceptable</td>
<td><1 mm or >3 mm</td>
</tr>
<tr>
<td>Marginal ridge index</td>
<td>1.5–2 mm</td>
<td>0</td>
<td>Unacceptable</td>
<td><1 mm or >3 mm</td>
</tr>
<tr>
<td>Pulpal floor</td>
<td>Flat</td>
<td>0</td>
<td>Unacceptable</td>
<td>Improper, very converge/diverge</td>
</tr>
</tbody>
</table>

Table 3: Mean preparation times (seconds) required for class I cavity preparation.

<table>
<thead>
<tr>
<th>Study group</th>
<th>n</th>
<th>Mean</th>
<th>Std. deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A: High-speed handpieces</td>
<td>21</td>
<td>483.76</td>
<td>328.666</td>
</tr>
<tr>
<td>Group B: Low-speed handpieces</td>
<td>21</td>
<td>538.29</td>
<td>247.765</td>
</tr>
</tbody>
</table>

\(t = 0.607, p < 0.05. \)
term of variations using the criteria described in Table 2. Code 1 cases (i.e., unacceptable levels) were observed in 9.52% of the class I cavities in both groups (Figure 1). Regardless of the handpiece speed or type, more than 90% of the students were able to prepare acceptable or proper cavity formations. Acceptable levels were observed in 57.14% and 61.90% of the cavities in groups A and B, respectively. Proper cavity preparations were achieved 33.33% of the group A and 28.57% of the group B students. Statistical analysis revealed no significant difference in cavity preparation performance between the groups (p-value > 0.05).

Surface roughness

Surface roughness profilometry was performed for the walls and floors of the prepared class I cavities. Representative (two-dimensional) images of the surface roughness profiles of the cavity walls and floors are shown in Figure 2. No significant difference (p > 0.05) was observed in the surface roughnesses of cavities that were prepared using the high- and low-speed handpieces (Table 4). The surface roughnesses of the cavity walls were 3.85 ± 1.55 μm and 3.16 ± 0.76 μm in the high- and low-speed handpiece groups, respectively. The surface roughness values for the cavity floors were greater than those of the walls in both groups. The high-speed handpieces (groups A) resulted in slightly rougher cavity floors (7.21 ± 2.69 μm) compared to the low-speed handpieces (4.60 ± 1.48 μm); however, this difference was not significant (p > 0.05).

Discussion

Dental handpieces and burs are among the mechanical devices that are most frequently used for ablating dental hard tissues. Although high-speed air turbine handpieces are dependable devices for cavity preparation in clinical practice, low-speed handpieces are still commonly used to prepare cavities in artificial teeth during preclinical training. Safety
Table 4: Area surface roughnesses of the prepared class I cavity walls and floors.

<table>
<thead>
<tr>
<th></th>
<th>High-speed (Group A)</th>
<th>Low-speed (Group B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>Floor</td>
<td>Wall</td>
</tr>
<tr>
<td>3.85 ± 1.55 μm</td>
<td>7.21 ± 2.69 μm</td>
<td>3.16 ± 0.76 μm</td>
</tr>
</tbody>
</table>

p > 0.05.

and conservative preparation have been offered as the justifications for the use of low-speed handpieces by dental students during preclinical training. Over the years, many dental educators have monitored distinguished dental trainees and observed them to experience difficulty performing clinical procedures at the commencement of training. In the present study, we attempted to evaluate the effects of the use of high- and low-speed handpieces on the performances of dental students during preclinical training in an operative dentistry course. We evaluated the time required for cavity preparation and the quality of the design and surface roughness of prepared cavities in artificial teeth. The results did not reveal any differences in the performances of the students in terms of time consumed, quality of cavity design, or delicate features, such as surface roughness. A possible reason for the lack of difference in the preparation time between the low- and high-speed handpieces is that the trainees were novices, and it is possible that, with training, they will prepare cavities in shorter times with high-speed handpieces.

According to Gulliani et al., manual capability is not solely related to practical and mechanical essence but is also effectively associated with the mental abilities of planning, analysis and verification. The perceptual ability of dental students was found to be a very important factor in the study of Gulliani et al., and the Perceptual Ability Test (PAT) scores of dental students have been found to be valid cognitive determinants of the spatial abilities of dental school applicants.

The main purpose of preclinical teaching and learning is to ensure a smooth transition of the dental students to the clinical stage. When students use low-speed handpiece in preclinical training, they build a mental image of the tactile senses and spatial abilities that is related to this type of handpiece. Therefore, when they initiate their clinical training, their use of high-speed handpieces is based on this mental image, which causes problems and iatrogenic accidents. This study has some limitations; e.g., clinical conditions could not be simulated because the students prepared artificial teeth in a phantom laboratory. Clinical dental work is significantly more difficult than preclinical work due to factors that include variations in mouth opening, excessive salivation, large tongues and patient fear. These factors are absent in preclinical training, which renders clinical work challenging for trainees. In such circumstances, the abilities of trainees to efficiently use high-speed handpieces will be greatly beneficial.

Conclusions

Within the limitations of this study, it can be concluded that the type of handpiece does not influence the learning capabilities of undergraduate dental students for the preparation of class I cavities. We did not observe any significant differences between the cavities that were prepared by our students using the high- and low-speed handpieces. The use of high-speed handpieces can reinforce undergraduate students’ confidence and ensure the smooth translation of their operative dental cognitive and psychomotor skills from the phantom laboratory to clinical practice. We strongly recommended the use of high-speed handpieces in operative dentistry preclinical training courses.

Conflicts of interest

The authors have no conflict of interest to declare.

References

11. Christensen GJ. Are electric handpieces an improvement. JADA 2002; 133: 1433.