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Introduction: Radiation exposure is one of the major limitations of computed tomographic coronary angiography
(CTA). The purpose of this study was to compare the objective and subjective image quality and radiation dose using
prospective ECG gating (PGA) versus ECG-controlled tube current modulation (ECTCM) scanning techniques.

Methods: A prospective, single-center study was performed at Prince Sultan Cardiac Centre, Qassim, Saudi
Arabia. A total of 104 patients with low-to- intermediate probability of coronary artery disease (CAD) underwent
CTA with either PGA or ECTCM acquisition. PGA was performed during the study period and compared with
the last 50 CTAs previously done using ECTCM. A 4-point scale was used to assess the image quality subjectively.
Objective image quality was assessed using image signal, noise, and signal-to-noise ratio (SNR).
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Results: Patient‘s Baseline characteristics were not different between the two scanning protocols. The 4-point score of
subjective image quality showed no significant differences between the PGA and ECTCM scans (2.9 ± 0.7, 2.96 ± 0.7,
respectively; p = 0.87). The objective image quality showed significantly higher noise and lower SNR with PGA com-
pared with ECTCM (31 ± 9, 27 ± 9, respectively; p < 0.001 for noise) and (15 ± 5, 17 ± 7, respectively; p < 0.001 for SNR),
with no statistical difference in the image signal (434 ± 123, 425 ± 103 HU, respectively, p = 0.7).

Radiation exposure was significantly lower with PGA than with ECTCM. The dose-length product (DLP) for PGA
was 334 ± 130 mGy, compared with 822 ± 286 mGy for the ECTCM. This corresponds to a 59% reduction in radiation
exposure (p < 0.0001).

Conclusions: Although prospective ECG-triggered axial scanning increased image noise, it maintained subjective
image quality and was associated with a 59% reduction in radiation exposure when compared with ECTCM.

� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

BMI body mass index
CAD coronary artery disease
CTA computed tomographic coronary angiography
DLP dose-length product
ECTCM ECG-controlled tube current modulation
HR heart rate
HU Hounsfield unit
MPR multi-planar reconstruction
PGA prospective gated axial
RGH retrospectively-gated helical
SNR signal-to-noise ratio
Introduction

Coronary computed tomography angiography

(CTA) has become an important tool in the
diagnosis of coronary artery disease. Despite
developments in multi-detector computed tomog-
raphy (MDCT) technology, exposure to ionizing
radiation and the subsequent lifetime potential
risk of cancer remains a limitation [1–4]. The 16-
row MDCT has a 1.9–3.9-fold increase in effective
radiation dose compared to conventional invasive
coronary angiography, but this is less than
Figure 1. Model shows ECG Gating in PGA vs ETCTM: (A) prospective axial ECG gating: the X-ray is on during the scan only at the best
diastolic phase black arrow. (B) ECG-controlled tube current modulation: X-ray is on throughout the cardiac cycle with maximum intensity
between 40% and 70% of RR interval(black arrow),while it drop to 5% at the rest of RR(arrow head).

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Subjecteive image quality assessed by 4 point score.
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the reported radiation dose using 64 MDCT which
ranges between 9.5 to 21.4 mSv [5–9]. In fact, there
are many CTA acquisition protocols and strategies
[10] that can be used to reduce radiation exposure,
such as using a lower tube voltage (100 kVp)
[11]. ECG-controlled tube current modulation
(ECTCM) [12] and prospective axial ECG gating
(PGA) [13–17] represent the latest techniques
associated with a reduction of up to 70% in radia-
tion exposure compared with retrospectively-
gated helical CT (RGH). However, these different
techniques may affect image quality by increasing
image noise or susceptibility to heart rate irregu-
larities [18,19] and which, in turn, may impair
diagnostic accuracy. In this study, we hypothesize
that PGA will lower radiation exposure without
compromising the quality of the CTA.

The aim of our study is to compare subjective
and objective image quality and radiation reduc-
tion using PGA versus ECTCM (with a 40%–70%
ECG window) using 256-slice CTA.
Figure 3. Objective image quality assessment using a region of
interest (1 cm2) in the ascending aorta at the level of Left main
coronary artery, Noise = standard deviation (HU). signal = the
mean(HU).
Material and methods

Study design
We designed a prospective single-center study

of patients referred to Prince Sultan Cardiac
Center, Qassim, Saudi Arabia for CTA between
May 2012 and March 2013. We included 104
patients with low-to-intermediate risk of coronary
artery disease (CAD), all of whom were referred
from outpatient clinics. We performed 54 consecu-
tive CTAs using PGA scan during the study per-
iod and compared these with the last 50 CTAs
previously performed using ECTCM technique.
Patients with a serum creatinine level of more
than 130 lmol/L or atrial fibrillation were
excluded. The center’s Research Ethics
Committee approved the study, and informed
written consent was obtained from each
participant.
CTA acquisition
Imaging was performed using 256-row dual

source CT scanners (Siemens Definition Flash�,
Siemens Healthcare, Forchheim, Germany) with



Table 2. Subjective and objective image quality.

Variable PGA: 54 patient ECTCM: 50 patient P value

Noise 31 ± 9 27 ± 9 0.013
Signal 434 ± 123 425 ± 103 0.7
SNR 15 ± 5 17 ± 7 0.012
Image quality score 2.89 ± 0.7 2.96 ± 0.7 0.6
Calcium sore 40 ± 181 43 ± 72 0.89
Radiation msV 4.67 ± 1.8 11.5 ± 4 <0.001
Radiation dose DLP 334 ± 128 823 ± 287 <0.001
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Table 1. Patients demographic data.

Variable PGA 54 patient ECTCM 50 patient P value

Age 50 ± 10 52 ± 11 0.23
Male sex n(%) 32 (60%) 31 (62%) 0.8
Diabetes mellitus n(%) 18 (33%) 21 (42%) 0.4
Hypertension n(%) 21 (39%) 24 (48%) 0.4
Dyslipidemia n(%) 20 (37%) 22 (40%) 0.5
Family history of CAD n(%) 2 (4%%) 3 (6%) 0.6
Current smoking n(%) 10 (19%) 10 (20%) 0.9
Body weight kg 80 ± 15 82 ± 12 0.5
BMI kg/m2 30.3 ± 5.8 30.7 ± 4.3 0.6
Waist cm 94 ± 28 99 ± 20 0.2
Hip cm 99 ± 28 103 ± 21 0.4
WHR 0.95 ± 0.07 0.97 ± 0.07 0.08
Heart rate HR bpm 67 ± 8 67 ± 9 0.9
100 kV 29 (54%) 28 (56%) 0.8

CTA finding
Patients with CAC > 0 14 (26%) 21 (42%) 0.099
CCS 20 ± 72 42 ± 71 0.13
Normal coronary n(%) 38 (70.4%) 28 (56%) 0.158
Mild stenosis n(%) 12 (22.2%) 19 (38%) 0.08
Moderate stenosis n(%) 1 (1.9%) 2 (4%) 0.5
Sever stenosis n(%) 3 (5.5%) 1 (2%) 0.34

Baseline characteristics and CTA finding showed no significant different between PGA and ECTCM groups. Stenosis was graded as mild (1–30%
stenosis) moderate (30–70%) and severe (>70% stenosis). BMI, body mass index; WHR, Waist-hip ratio; CAC, coronary artery calcification; CCS,
coronary calcium score.
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a gantry rotation time of 0.28 s, temporal resolu-
tion of 75 ms, 0.6-mm collimation, tube current
320 mAs for PGA. For patients with a body weight
of <85 kg, a 100-kVp tube voltage was used, while
120 kVp was used for patients with a body weight
of P85 kg.

CTA data were acquired with a breath hold in
deep inspiration. Beta-blockers were used to keep
resting heart rate (HR) < 65 beats per minute (the
mean HR during the scan was 67 ± 9), and all
patients received sublingual nitroglycerine during
the procedure. A test bolus of 15 mL of contrast
agent XENETIX 350� (350 mg iodine/mL) followed
by a 25-mL saline flush, both at flow rates of 6 mL/
s, was administered to determine the time to peak
enhancement in a region of interest in the ascend-
ing aorta. For coronary CTA, 80 mL followed by a
45-mL saline flush, both at flow rates of 6 mL/s,
was administered. Image acquisition was started
after the predetermined delay time plus 3 s.
ECG gating
CTA was performed using either PGA or

ECTCM (Fig. 1).

CTA image reconstruction
Data from the best diastolic phase was recon-

structed for PGA while data from the best systolic
and best diastolic phases were used for ECTCM.
Reconstructed slice thickness was 0.6 mm, with a
medium sharp filter B26.

Reconstructed axial images and oblique multi-
planar reconstruction (MPR) images were
reviewed by two readers using a workstation
(MMWP�; Siemens Healthcare) with window
width 700 HU and level 200 HU.

Image quality
The subjective and objective image quality of all

CTAs was evaluated separately by two readers.
Subjective image quality was scored visually
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Figure 4. Comparing prospectively gated axial (PGA) acquisition with
ECG controlled tube current modulation (ECTCM) scan. (A) Radiation
exposure is significantly reduced using PGA vs. ECTCM PGA.
(B) PGA acquisition prone to have higher noise than ECTCM scans.
(C) There is no significant difference in subjective image quality.
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according to a four-point scale (4 for excellent
image quality, 3 for good quality, 2 for acceptable,
and 1 for non-diagnostic; Fig. 2). Final scores were
averaged. Objective image quality was evaluated
by calculating image signal and noise using a 1-
cm2 region of interest (ROI) in two sequential
slices in the aortic root at the level of the left main
coronary artery. Image signal was the mean
Hounsfield units (HU) and noise was averaged
standard deviation (SD) in HU (Fig. 3).

Coronary artery calcification CAC and CTA
data:

We used MMWP software to calculate coronary
calcium score (CCS) using the Agatston method.

CTA data: Coronary stenoses were graded using
quantitative measurements using Syngo MMWP
workstation by two readers into four categories:
normal if no stenosis, mild (>0–30% stenosis),
moderate (31–70% stenosis), and severe (>70%).
Effective radiation dose
The effective radiation dose was derived from

the dose length product (DLP) multiplied by a con-
version factor of 0.014 for chest CT in adults [20].

Statistical methods
Statistical analyses were performed with com-

mercial software (SPSS for Windows� version
19.0; SPSS Inc., Chicago IL, USA). Data were
expressed as mean ± standard deviation. A p
value <0.05 was considered statistically significant.

T-test analysis was used to compare numerical
variables between the two groups, while Chi-
square analysis was used to compare categorical
variables.
Results

Fifty-four patients underwent CTA with PGA
and 50 patients underwent CTA with ECTCM.
The mean age was 51 ± 11 years; and 61% were
male. The mean body weight was 81 ± 13 kg; the
mean body mass index (BMI) was 30.6 ± 5.0 kg/
m2, and waist circumference was 96 ± 24 cm.
Baseline characteristics, CCS, and CTA data of the
two groups are shown in Table 1. The scores of
subjective image quality showed no significant
difference between PGA and ECTCM (2.9 ± 0.7
and 2.96 ± 0.7, respectively; p = 0.87). The objective
image quality scores showed significantly
increased image noise (31 ± 9 vs. 27 ± 9 HU, p <
0.001; Fig. 4) and decreased SNR (15 ± 5 vs. 17 ± 7,
p < 0.001) with no changes in image signal (434 ±
123 vs. 425 ± 103 HU, respectively, p = 0.7; Table 2).

Radiation exposure was significantly lower with
PGA than with ECTCM, with DLP 334 ± 130 mGy
vs. 822 ± 286 mGy, respectively, and estimated
effective dose 4.67 ± 1.8 mSv vs. 11.5 ± 4 mSv,
respectively. This corresponds to a 59% reduction
in radiation exposure (p < 0.0001; Fig. 4).

Non-diagnostic studies with a subjective score
of 1 were observed in three PGA patients (5.5%)
and one ECTCM patient (2%; p = 0.647). All these
patients had motion artifacts as a cause of
degraded image quality.
Discussion

Radiation exposure remains one of the major
concerns of CTA [21]. Achieving a lower radiation
dose while maintaining optimal image quality is
an important prerequisite when choosing the
most appropriate scan protocol to minimize
image-degrading artifacts caused by heart rate
variation and tachycardia. ECTCM, lower tube
voltages, automated exposure control, prospective
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ECG-triggered high-pitch spiral scan, and
prospective ECG-triggered axial scan are some
techniques used to lower exposure. Studies have
shown that these techniques can reduce radiation
dose without significant effects on image quality
[22,23].

With PGA, the scan is triggered by the ECG sig-
nal at a predefined time interval that is averaged
using multiple cardiac cycles before the actual
acquisition to obtain the data during the diastolic
phase in which motion artifact is minimal. The
scan is stopped at the rest of the cardiac cycle;
with a scan pitch of 1, there is no overlap between
slices. Thus, this scan mode is more susceptible to
heart rate variation [24,25]. Conversely, in RGH,
the data are acquired continuously throughout
the entire cardiac cycle. Using a lower scan pitch
(0.2–0.3) in cardiac imaging increases the overlap-
ping of transverse slabs that causes over-scanning
of the tissue at the Z axis. This leads to a linear
increase in X-ray photons that contributes to each
reconstructed slice even if the same X-ray tech-
nique settings (kVp and mAs) are used, and which
may explain lower image noise and higher radia-
tion exposure when using a smaller pitch value
in an RGH scan [26–29]. The same technique is
used with ECTCM; that is, dropping the tube cur-
rent (mA) during systole (up to 5% compared with
diastole) in an attempt to lower radiation [30].
With ECTCM, both the systolic and diastolic
phases are acquired and available to assess car-
diac function and left ventricle dimensions. The
most significant drawback of PGA is its inability
to assess cardiac wall motions or ejection fraction
because of the lack of the systolic phase. Our
study demonstrated a 59% lower radiation expo-
sure using PGA, with preserved image quality
compared with ECTCM. Most of the scan had
good diagnostic quality, with 94.5% interpretable
vessels for PGA vs. 98.0% for ECTCM. Multiple
studies have compared PGA with RGH with
respect to radiation and the changes in diagnostic
image value. Hausleiter et al. [31] reported a 69%
reduction in the radiation dose with PGA in a
multicenter PROTECTION III study using a 64-
slice scanner; however, acquisition in the RGH
scan involved the entire cardiac cycle. Shuman
et al. [32] reported non-inferior image quality
and a 77% dose reduction with PGA compared
with ECTCM when the tube current was set at
600–790 mA during 60%–80% and at 200–400 mA
during the rest of the R-R interval. In our study,
the mA was set to decrease by up to 5%. Similar
results were shown by Hou et al. [33] using a
256-slice scanner. They demonstrated a 73% dose
reduction with comparable image quality between
PGA and RGH. A recent meta-analysis of 20 dif-
ferent studies [34] involving 3330 patients showed
91.3% diagnostic quality of CTA with prospective
triggering and 93.3% with retrospective triggering.
Conversely, the pooled effective dose was lowered
by a factor of 3.5 with prospective triggering.
Our findings support the use of PGH with a
dual-source 256-slice CT scanner in a select group
of patients with stable heart rates. This technique
can yield good diagnostic imaging value at a low
radiation dose.

Study limitations
Our study has several limitations. First, only one

vendor’s CT machine was used. Second, the tube
voltage was set according to the patient’s body
weight: 100 kV when the body weight was <85 kg
and 120 kV when the body weight was P85 kg,
regardless of the patient’s BMI. Third, no patients
with a high risk of coronary artery disease who
tend to have higher coronary calcification were
included [35]. Therefore, the effect of excess calci-
fication and calcium-related artifact on image
quality could not be evaluated. Fourth, patients
with previous revascularization were excluded;
thus, the effect of metallic clips and stents, which
may induce artifacts on the diagnostic image qual-
ity in different scan modes could not be assessed.
Finally, to compare the findings of CTA using
two different acquisition techniques, invasive
coronary angiographies – considered a gold
standard – were performed on only four patients
who had severe stenosis by CTA.
Conclusion

The use of PGA affords a 59% radiation reduc-
tion compared with ECTCM with a 40%–70%
ECG window, with no significant effect on subjec-
tive image quality, while objective image quality
was significantly affected by increased image
noise and reduced SNR. According to the results
of our study, PGA has high diagnostic accuracy
with lower radiation exposure, suggesting it may
be the preferred acquisition protocol in patients
with regular heart rates.
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