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Abstract 
Background: Male infertility is a multifactorial disorder, which affects 
approximately 10% of couples at childbearing age with substantial clinical and 
social impact. Genetic factors are associated with the susceptibility to spermatogenic 
impairment in humans. Recently, SEPT12 is reported as a critical gene for 
spermatogenesis. This gene encodes a testis specific member of Septin proteins, a 
family of polymerizing GTP-binding proteins. SEPT12 in association with other 
Septins is an essential annulus component in mature sperm. So, it is hypothesized 
that genetic alterations of SEPT12 may be concerned in male infertility. 
Objective: The objective of this research is exploration of new single nucleotide 
polymorphism G5508A in the SEPT12 gene association with idiopathic male 
infertility in Iranian men. 
Materials and Methods: In this case control study, 67 infertile men and 100 normal 
controls were analyzed for genetic alterations in the active site coding region of 
SEPT12, using polymerase chain reaction sequencing technique. Fisher exact test 
was used for statistical analysis and p<0.05 was considered as statistically 
significant. 
Results: Genotype analysis indicated that G5508A polymorphic SEPT12 alleles 
were distributed in three peaks of frequency in both control and diseases groups. 
Categorization of the alleles into (GG), (GA), (AA) types revealed a significant 
difference between infertile patients (azoospermic and asthenospermic) and normal 
controls (p=0.005). 
Conclusion: According to our finding we suggest that G5508A polymorphism in 
SEPT12 gene can affect spermatogenesis in men, the opinion needs more 
investigation in different populations. 
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Introduction 

 
ubfertility is one of the major clinical, 
social and economic concern. In up to 
55% of couples seeking medical 

attention, the male partner is diagnosed with 
spermatogenic failure, defined as one or more 
semen parameters falling below the world 
health organization (WHO) cut-off for 
normozoospermia (1). In the most severe 
forms of infertility with male factor 
azoospermia defined as complete absence of 
sperm from ejaculate, and asthenospermia 
means having defects in sperm motility (2). 
The etiology of spermatogenesis failure 

includes genetic abnormalities (3), infectious, 
and environmental causes (4). 

Spermatogenesis is governed by the 
parallel and serial actions of thousands of 
genes, alterations in any of them or their 
expression may cause male infertility (5-10). 
In reality, only a handful of genetic alterations 
have clearly been shown to cause 
spermatogenic failure (11). 

Recently, a number of reports have linked 
altered expression of Septin genes to a range 
of diseases, including male infertility (12, 13). 
Since 1997, 14 members of Septin proteins 
have been characterized in humans (SEPT1-
SEPT14), some of which are tissue-specific. 
All of the 14 genome-mapped human Septin 
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genes encode a highly conserved central GTP 
binding/hydrolysis domain which is very 
critical in GTPase signaling properties, as well 
as oligomerization between Septins and other 
filamentous proteins. This functional domain 
consists of three distinct amino acid sequence 
elements, G1, G3 and G4, which share 
sequence identity to the well-characterized 
Ras GTPase family (14). 

Among all septins, SEPT12 is dominantly 
expressed in testis tissue of adults, with an 
established essential role in annulus structure 
of mature sperm (15). Recently, it has been 
shown by investigators that high levels of 
SEPT12 mRNA is observable exclusively in 
the testis of sexually mature males (human 
and mouse), while this mRNA was not 
detectable in men with sterility resulting from 
inability to produce mature spermatozoa. So, 
it has been considered that SEPT12 is crucial 
for the process of spermatogenesis in 
mammals (16). 

With this in mind, in the current study we 
tried to monitor genetic variations of SEPT12 
gene in an Iranian population of infertile men 
with non-obstructive azoospermia and 
asthenospermia, in order to find any 
relationship between genetic alterations in the 
SEPT12 gene and some cases of idiopathic 
male infertility. 
 

Materials and methods 
 
Specimen 

The study population in this case-control 
report is consisted of 67 infertile men (50 
azoospermia and 17 asthenospermia) who 
were referred to Royan Instiute, Tehran, Iran, 
during 2012-2013. Also, 100 normozospermic 
men with female factor subfertility were 
analyzed as control (Table I). Using power 
analysis and sample size (PASS, 2011), the 
power of the study was calculated 0.78. 
Patients with hypogonadotropic 
hypogonadism, cryptorchidism, orchitis, 
ejaculatory duct obstruction, and men with 
microdeletions of the long arm of the Y-
chromosome or karyotype abnormalities were 
excluded from the study. The classification of 
men into the normozoospermic and 
azoospermic groups was according to WHO 
criteria (2). Informed consent was obtained 
from all individuals enrolled in the study. 

Genomic DNA was extracted from 
peripheral blood specimens using a QIAamp 

DNA minikit (Qiagen Germany), according to 
the instructions provided by the manufacturer. 

 
Polymerase Chain Reaction (PCR)-
Sequencing analysis 

For genetic analysis, the coding region of 
G1, G3 and G4 functional domains of SEPT12 
including exones 2-3 and their interval intron, 
and also exon 6 and its exon–intron 
boundaries were screened by polymerase 
chain reaction (PCR)-directed sequencing, 
using the specific primers designed by 
Primer3 software (Primer3.ut.ee) (Table II). 

To analyze the aforementioned DNA 
sequences, PCR-Sequencing technique was 
performed with an initial denaturation at 95°C 
for 5 min, followed by 30 cycles of 
denaturation at 95°C for 45 sec, annealing at 
60°C for 45 sec and extension at 72°C for 45 
sec. The PCR products were confirmed by 
running on 1.5% agarose gel, and were 
applied for sequencing by an ABI 3730XL 
automated DNA sequencer (Macrogen, Seoul, 
Korea). 
 
Statistical analysis 

Fisher exact test was used to investigate 
the relationship between three sample groups 
(control, azoospermic and asthenospermic) 
and allele frequency. All statistical analysis 
were performed using SPSS (Statistical 
Package for the Social Sciences version 17.0, 
SPSS Inc., Chicago, IL, USA) software. A 
p<0.05 was considered as statistically 
significant. 
 

Results 
 

Sequence analysis data revealed the 
nucleotide transition G5508A in SEPT12 gene 
of the patients with respect to normal controls 
(Fig.1). The patients were divided into the two 
groups of azoospermia and asthenospermia. 
As indicated in Table I, among the 
azoospermic patients (50 individuals) 36 
(72.0%) samples were normal homozygous 
(GG), 11 (22.0%) of them had the 
heterozygous (GA) mutation and 3 (6.0%) 
individuals were observed with both alleles 
mutated (AA). In asthenospermia patients, 
number of individuals harboring normal 
homozygous (GG), heterozygous (GA) and 
completely mutated (AA) alleles were, 11 
(64.7%), 5 (29.4%) and 1 (5.9%), respectively. 
Statistical analysis of the data showed that the 
G5508A variation of SEPT12 gene revealed 
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significantly different genotype distributions 
between the normal control group and the 
patients groups (p=0.005). Also, the frequency 
of the normal G allele was significantly higher 
in the control group compared with the 
patients groups (p=0.001). However, there 
was no significant change between the two 

groups of azoospermic and asthenospermic 
for this allele (p=0.05). On the other side, the 
frequency of the A allele in normal group was 
significantly lower compared with the both 
patients groups (p=0.001). Again, no 
significant change was observed between the 
two patients groups (p=0.05). 

 
 
Table I. Distribution of the allelic alteration of G5508A between infertile patients and normal controls 
 

 Normal 

n (%) 

Azoospermia 

n (%) 

Asthenospermia 

n (%) 

 

p-value 

Genotype-wise comparison, n (%) 

GG 89 (89.0)a 36 (72.0)b 11 (64.7)b  

GA 11 (11.0)a 11 (22.0)ab 5 (29.4)b 0.005 

AA 0 (0.0)a 3 (6.0)b 1 (5.9)b  

Allele-wise comparison, n (%) 

G 189 (94.5)a 83 (83.0)b 27(79.4)b    

A 11 (5.5)a 17 (17.0)b 7(20.6)b 0.001 

The same letter in each rows show not significant difference between groups (p-value > 0.05) according to Fisher exact test.  
 
 
Table II. Primer pairs used in this study 
 

Coding region Primers (5ˈ3ˈ) Product size (bp) 

G1-G3 F: GTTGATCTGGTCCCCGAAG 

R: TAAAACGCCCACCCTAACTG 
332 

G4 F: TGATGTCCTCGTCAAAGCAC 

R: CCCTGCTGCTGTCGTTTAT 
341 

bp: base pair                          F: forward                              R: reverse. 
 
 

 
Figure 1. Electropherogram showing the heterozygote and homozygote DNA sequences of the SEPT12 gene variants G→A 
compared with the normal-person sequence. The stars indicate location of the variations. 

 
Discussion 

 
There are several reports introducing novel 

genes involved in spermatogenesis, in the 
way that their down-regulation in the testes 
tissues of infertile men has been identified by 
high throughput expression analyses (9). 
SEPT12 is one of these genes which its lower 

expression in the testicular biopsies of infertile 
men is significantly related with azoospermia. 
In this study, we hypothesized genetic 
variations of SEPT12 gene may be associated 
with male infertility caused by 
spermatogenesis failure. 

The present association study revealed 
significantly different allele frequency of 
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G5508A in SEPT12 gene, among patients 
with azoospermia and asthenospermia with 
respect to control men with normal 
spermograms. Although the number of 
analyzed patients is not enough to have a final 
decision, our preliminary finding observed in 
Iranian patients suggests that this G>A 
alteration may play a causative role in 
disruption of spermatogenesis. According to 
the recent reports showing that some SEPT12 
SNPs may predispose men to spermatogemic 
failure (16-18), the current data propose that 
the novel G5508A polymorphism can be 
considered as a biomarker for idiopathic male 
infertility. 

Today, in vitro fertilization has been 
established as an efficient technique to 
resolve infertility in couples with female 
factors, but it cannot be useful for severe male 
factors with lacks in spermatogenesis. 
Although testicular sperm extraction-
intracytoplasmic sperm injection is now 
successfully used for these cases, however, it 
cannot benefit patients with complete failure in 
spermatogenesis. So, genetic diagnosis of 
severe male infertility is a critical subject for 
assisted reproductive technology. 

 
Conclusion 

 
In conclusion, we suggest that the novel 

G5508A polymorphism in SEPT12 gene may 
be associated with idiopathic male infertility in 
Iranian men. However, as this genetic 
alteration is in the intronic region, the 
molecular mechanism of its effectiveness is 
really unknown. Further study is needed to 
test this synonymous coding polymorphism for 
potential alteration of splicing between exonic 
elements. 
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