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Docking
Tuberculosis (TB) is one of the oldest threats to public health. TB is caused by the pathogen

Mycobacterium tuberculosis (MTB). The Sigma factors are essential for the survival of MTB.

The Sigma factor Sigma F (SigF) regulates genes expression under stress conditions. The

SigF binds to RNA polymerase and forms a holoenzyme, which initiates the transcription

of various genes. The Usfx, an anti-SigF protein, binds to SigF and alters the transcription

initiation and gene expression. In the present work, virtual screening studies are taken up

to identify the interactions between SigF and small molecular inhibitors which can inhibit

the formation of holoenzyme. The studies reveal that ARG 104 and ARG 224 amino acid

residues of SigF protein are forming important binding interactions with the ligands. The

in silico ADME properties for the ligand data set are calculated to check the druggability

of the molecules.

� 2015 Asian African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

All rights reserved.
Introduction

The communicable disease tuberculosis (TB) is caused by the

oldest human pathogen Mycobacterium tuberculosis (MTB). In

the year 2013 nearly 1.5 million people died and 9.0 million

new TB cases were reported [1]. MTB can survive in the host

organism against the change in environmental conditions

due to complex gene expression, which is controlled by speci-

fic Sigma factors [2,3]. The Sigma factors, a regulatory family

of proteins, play a key role in the immunopathology of MTB
[4,5]. The MTB encodes 13 Sigma factors, among which

Sigma factor F (SigF) protein regulates the SigB and SigC factor

protein expression, which are important in virulence [6–8].

The SigF is involved in direct and indirect regulation of many

genes, which are essential for cell wall protein synthesis and

survival of MTB in the host system [9,10]. Geiman et al.

reported that 187 genes in stationary phase and 277 genes

in late stationary phase show less expression in the SigF-

deficient MTB [11]. The Usfx, an anti-Sigma factor, negatively

regulates the activity of SigF, in response to a variety of
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Table 1 – The structures and Hydrogen bonding interactions of Sigma lifechem databank ligand molecules with SigF protein, prioritized with best docking score and energy
are represented.

S. No Structure Glide score Glide energy Intermolecular interactions

M1

(2S)-4-{[4-(Dimethylamino)phenyl]amino}-2-(4-methyl-1-
piperazinyl)-4-oxobutanoic acid

�9.39 �40.90 ILE54:O–M1:H50
ARG104:HE–M1:O12
ARG104:HH21–M1:O12
ARG104:HH21–M1:O13
ARG224:HH22–M1:O19

M2

(2S)-4-[(2,4-Difluorophenyl)amino]-4-oxo-2-(1-
piperazinediiumyl)butanoate

�9.32 �38.46 ARG104:HE–M2:O12
ARG104:HH21–M2:N1
ARG104:HH21–M2:O12
ARG224:HH22–M2:O18

M3

(2S)-4-[(4-Isopropylphenyl)amino]-2-(4-methyl-1-piperazinyl)-
4-oxobutanoic acid

�8.94 �36.34 ARG224:HH22–M3:O12
ARG224:HH12–M3:O12
ARG104:HH21–M3:O18
ARG57:HH12–M3:O11

M4

(2R)-4-(2-Naphthylamino)-4-oxo-2-(1-piperazinediiumyl)
butanoate

�8.52 �44.35 ARG104:HH21–M4:O12
ARG104:HE–M4:O15
ARG57:HH12–M4:O11
GLU59:OE2–M4:H25
GLU59:OE1–M4:H25
Pi–cation
M4–ARG57:NH2
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M5

(2R)-4-[(2,4-Dimethylphenyl)amino]-2-(4-methyl-1-piperazinyl)-4-oxobutanoic acid

�8.24 �33.89 GLU59:OE1–M5:H24
GLU59:OE2–M5:H24
ALA55:O–M5:H40
ARG104:HE–M5:O11
ARG104:HH21–M5:O11
ARG224:HH22–M5:O16
Pi–cation
ARG224:NH1–M5
Pi–sigma
PHE225:HE2–M5

M6

N-[2-(Dimethylamino)-2-(2-thienyl)ethyl]-N 0-(3-nitrophenyl)ethanediamide

�8.08 �36.46 ARG224:HH22–M6:O16
ARG224:HH22–M6:N7
ARG224:HH12–M6:O16
ARG104:HH21–M6:O19
ASP174:OD1–M6:H43
Pi–cation
ARG104:NH1–M6
ARG104:NH2–M6

The 12,000 molecules of Sigma lifechem database is used for screening process. The screening process carried out with HTVS, SP and XP docking modes, the output of 68 molecules are analyzed. The

6 molecules (M1 to M6) with the best docking score are represented with docking interactions in the table.

Table 2 – ADME properties.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17
Mol Stars CNS Mol Weight SASA Volume DHB AHB QPlogP o/w QPP Caco QPlog BB Meta Human OralA % Human OralA N and O Rule of 5 Rule of 3

M1 1 0 334.417 636.73 1116.938 2 9.5 �0.769 12.671 �0.148 6 2 42.182 7 0 1
M2 0 0 313.303 538.80 935.71 3 8 �1.087 9.197 0.097 3 2 37.828 6 0 1
M3 0 0 333.43 664.67 1154.632 2 8.5 �0.273 9.156 �0.351 5 2 42.558 6 0 1
M4 0 �1 327.382 615.62 1057.566 3 8 �0.754 5.476 �0.479 3 2 35.747 6 0 1
M5 0 0 319.403 626.1 1088.01 2 8.5 �0.545 14.135 �0.039 6 2 44.339 6 0 1
M6 0 �2 362.403 590.23 1049.348 2 6.5 1.687 59.566 �1.14 4 3 68.591 8 0 0

Optimum values for the parameter considered. 95% of available drugs fall in the range of stars (more number of stars indicate that the molecule is less drug like) [Stars]: 0–5, predicted central nervous

system activity [CNS]: �2(inactive) + 2(active), molecular weight [Mol Weight]: (130–725), solvent accessible surface area using a probe with 1.4 Å radius [SASA]: 300.0–1000.0, total solvent accessible

volume in cubic angstroms [Volume]: 500.0–2000.0, hydrogen bond donors [DHB]: (0.0–6.0), hydrogen bond acceptors [AHB]: (2.0–20.0), predicted octanol/water partition coefficient [QPlogP o/w]: (�2.0–

6.5), Predicted apparent Caco-2 cell (model for gut blood barrier) permeability in nm/s [QPP Caco]: <25 poor, >500 great, predicted brain/blood barrier partition coefficient [QPlogBB]: (�3.0–1.2), number

of likely metabolic reactions [Meta]: (1–8), human oral absorption [Human OralA]: 1 low, 2 medium, 3 high, % human oral absorption [% Human OralA]: >80% high, <25% low, number of nitrogens and

oxygens [N and O]: 2–15, [Rule of 5] (4), [Rule of 3] (3). C = Column.
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Fig. 1 – Binding interaction poses of ligands with SigF protein for the best docked molecules. The ligand molecules are

represented in red ball and stick model, p–p stacking are shown in orange color, intermolecular Hydrogen Bonds are

represented in black and the SigF protein is shown in light blue color.
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physiological stress conditions [12,13]. In the present work

the in silico screening has been taken up to identify small

molecules, which can act as antagonists for the SigF protein.

Methodology

The SigF protein binds to its cognate anti-SigF (Usfx) in its reg-

ulatory circuit; in the absence of Usfx, SigF initiates transcrip-

tion initiation and gene expression, which leads to protein

synthesis and in turn helps in the survival of MTB. Finding

inhibitors for the SigF protein at the Usfx binding site will

arrest the survival of MTB. In the present work in silico screen-

ing is taken up to identify competitive inhibitors for Usfx.

Virtual screening

The structure of SigF was considered from an earlier work

[13]. The SigF structure was energy minimized using the pro-

tein preparation wizard in Maestro 9.0.111 (Maestro v 9.0.111

Schrodinger LLC, New York, NY) applying OPLS 2001 (opti-

mized potential for liquid simulations 2001) force field with

default parameters [14]. The Virtual screening work flow of

Schrodinger involves three consecutive steps: (a) receptor grid

generation; (b) ligand preparation; and (c) Glide ligand dock-

ing [15]. The grid was generated using the Gridgen module

of Schrodinger Suite at the active site amino acid residues

[13,16]. The Sigma lifechem small molecule database was

considered and retrieved in Sdf file format. The ligands were

subjected to ligand preparation using the Ligprep 2.5 module

of Schrodinger Suit [17] and during the process, tautomeric

states and ionization states were generated using the epic

module. The work flow utilizes the Glide module for Ligand
and Receptor docking. Glide filters the molecules using

HTVS (high throughput virtual screening), SP (standard preci-

sion) and XP (extra precision) modes [16]. The OPLS 2001 force

field [14,18] parameters were applied while performing dock-

ing calculations. The molecules with the best Glide score and

Glide energy were visually inspected and considered for fur-

ther analysis. The SASA (solvent accessible surface area) for

the receptor and ligand complexes were calculated with the

default parameters. The receptor–ligand complexes were ana-

lyzed using Accelrys Discovery Studio Visualizer (Accelrys

Software Inc., 2007 Accelrys Discovery Studio Visualiser v

2.5.5. Accelrys Software Inc., San Diego).

ADME properties

The Absorption Distribution Metabolism and Elimination

(ADME) properties were calculated using the QikProp [18]

module of Schrodinger suite (QikProp, version 3.0,

Schrodinger, LLC, New York, NY, 2010) for assessing the drug-

gability and to filter the ligand molecules at an early stage of

identifying the new antagonists.

Results and discussion

Virtual screening

The virtual screening studies are carried out with 12,000 small

ligand molecules from the Sigma lifechem database. In the

process, the grid box is generated with 75 · 75 · 75 Å3 around

the active site amino acids which were considered from an

earlier study [13]. In the ligand preparation process using

the epic program, 5 stereo isomers from 32 structures
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Fig. 2 – Solvent accessible surface area of SigF protein and the SigF protein–ligand complexes for the best docked molecules.

The solvent accessible surface area (SASA) of SigF protein before docking (SigF BD) is represented in blue color line and the

protein–ligand complex is represented with maroon color line for the best docked molecules. The amino acid numbers are

represented on X-axis and SASA values are shown on Y-axis.
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generated and one ring conformation generated for 5 and 6-

membered rings with the least energy are considered;

20,646 molecular structures are generated in the ligand
preparation output file, which are used in the screening pro-

cess. Among the 20,646 ligand molecules, 6790 molecules

are docked in HTVS mode; the top 10% (679 of 6790) of the
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Fig 2. (continued)
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ligand molecules from the HTVS screening process are con-

sidered for SP docking. The 679 ligand molecules are docked

and the top 10% of SP docked molecules are utilized for XP

docking mode. Finally, 68 docked complexes are generated

in the XP flexible docking mode. The docked complexes are

analyzed, visually inspected and the data of a sample of 6

molecules (M1 to M6) with the corresponding docking proper-

ties generated namely docking score, docking energy, docking

interactions and ADME properties, are presented in Tables 1

and 2. The hydrogen bond interactions and p cation interac-

tions are depicted in Fig. 1. The virtual screening analysis
reveals that the amino acid residues ILE54, ARG57, GLU59,

ARG104, ASP174 and ARG224 are involved in the hydrogen

bond formation and p cation interactions with the M1 to M6

ligand molecules. The amide group oxygen in M6 molecule

and the amide group oxygen in M1 to M5 molecules bound

in the docked complex through hydrogen bonds with the

amine hydrogen of ARG104 in SigF protein. The piperazine-

1-yl acetic acid moiety present in the M1 to M5 molecules is

consistently binding to the ARG224 amino acid of the SigF

protein. The carboxyl oxygen forms a hydrogen bond with

the amino group (hydrogen) of the ARG224. The docking result
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analysis reveals the common presence of piperazine-l-yl acetic

acid moiety and an amide group in all the ligands and is cap-

able of binding effectively with ARG104 and ARG224 of the

SigF protein. The SASA calculations are carried out for the

SigF protein and the SigF–Ligand docked complexes and are

represented in Fig. 2. The SASA values of the SigF protein for

the amino acid residues which are involved in bond formation

(ILE54, ARG57, GLU59, ARG104, ASP174 and ARG224) and spa-

tially nearby residues in the binding site decreased after dock-

ing when compared with that before docking. The decrease in

SASA values confirms that these amino acid residues are

involved in the bond formation with the ligand molecules.

ADME properties

The ADME properties for the new ligands identified namely

M1 to M6 are calculated and tabulated in Table 2. These mole-

cules have properties within the limits projected as per the

Lipinski rules of 5 and Jorgensen’s rules of 3, with medium

human oral absorption, which signifies that the ligand

molecules have acceptable ADME properties.

Conclusion

The virtual screening studies performed using Sigma lifechem

database against active site residues of SigF reveal ILE54,

ARG57, GLU59, ARG104, ASP174 and ARG224 amino acid resi-

dues to be important for binding in the SigF protein. A sample

of six ligands is presented in the present communication; sev-

eral novel scaffolds are identified in the virtual screening stud-

ies. The piperazine-l-yl acetic acid moiety and an amide group

in the ligands commonly exist and forms hydrogen bonds with

ARG104 and ARG224 of the SigF protein. The ligand molecules

show admissible ADME properties and are identified as novel

antagonists for the SigF protein. Further work is in progress

in the direction of identifying novel potent inhibitors for the

SigF protein, which is important for virulence.
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