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A B S T R A C T

Objective/Background: Isoniazid (INH) is one of the effective antituberculosis (TB) drugs used

for TB treatment. However, most of the drug-resistant Mycobacterium tuberculosis (MTB)

clinical strains are resistant to INH, a first-line antituberculous drug. Certain metabolic

enzymes such as adenosylhomocysteinase (Rv3248c), universal stress protein (Rv2623),

nicotinamide adenine dinucleotide (reduced)-dependent enoyl-acyl carrier protein

reductase (Rv1484), oxidoreductase (Rv2971), dihydrofolate reductase (Rv2763c), pyrroline-

5-carboxylate dehydrogenase (Rv1187) have been identified to bind INH–nicotinamide

adenine dinucleotide (INH–NAD) and INH–nicotinamide adenine dinucleotide phosphate

adducts coupled to Sepharose resin. These enzymes are reported to be involved in many

important biochemical processes of MTB, including cysteine and methionine metabolism,

mycobacterial growth regulation, mycolic acid biosynthesis, detoxification of toxic

metabolites, folate biosynthesis, etc. The truncated INH–nicotinamide adenine

dinucleotide (oxidized) adduct, 4-isonicotinoylnicotinamide, isolated from urine samples

of human TB patients treated with INH therapy is proposed to have antimycobacterial

activity.

Methods: To understand the mechanism of interaction of the truncated INH–NAD adduct,

binding energy studies were carried out on the aforementioned six enzymes with known

three-dimensional structures using AutoDock4.2.

Results: In silico docking analysis of these MTB enzymes with the truncated INH–NAD

adduct showed favorable binding interactions with docking energies ranging from �5.29

to �7.07 kcal/mol.

Conclusion: Thus, in silico docking study revealed that the INH–NAD adduct, which is

generated in vivo after INH activation, may undergo spontaneous hydrolysis to form the
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Fig. 1 – Chemical structur
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truncated INH–NAD adduct and further binds and inhibits multiple enzymes of MTB, in

addition to InhA, confirming that INH is an effective anti-TB drug acting at multiple

enzymes. Further analysis of amino acid residues in the active site of INH–NAD-binding

proteins showed the probable presence of catalytic triad in four enzymes possibly involved

in INH binding to the enzyme.

� 2015 Asian African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

All rights reserved.
Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB),

is a major cause of morbidity and mortality worldwide.

Globally, 33% of the population is considered to be infected

with MTB, with 9.0 million new patients and 1.5 million

deaths in the year 2013, including 360,000 deaths among

human immunodeficiency virus (HIV)-positive individuals.

India and China had the largest number of TB cases (24%

and 11%, respectively) of the total cases identified [1]. In addi-

tion, multidrug-resistant strains of MTB in association with

HIV have further created a fearsome aspect to the problem

[2]. The current epidemics of extensively drug-resistant TB

have also been an increasing threat in some regions around

the world [3]. Most drug-resistant clinical strains of MTB are

resistant to isoniazid (INH, isonicotinic acid hydrazide), a

first-line antituberculous drug [4].

INH (Fig. 1) is one of the most effective anti-TB drugs for

prevention and treatment of TB. It inhibits the synthesis of

mycolic acids, a vital component of the bacterial cell wall.

At therapeutic levels, INH is bacteriocidal against actively

growing intracellular and extracellular MTB. Under multidrug

therapy, it is used in conjunction with other effective anti-TB

agents [5].

Mechanisms of action of INH

The mechanism of INH action has been the subject of exten-

sive studies. It is reported to generate a variety of highly reac-

tive compounds, including reactive oxygen species such as

superoxide, peroxide, and hydroxyl radical [6], nitric oxide

[7], reactive organic species such as isonicotinic acyl radical

or anion [8], and certain electrophilic species [9], which then

attack multiple targets in MTB cases [10,11]. INH is a prodrug,

that is, it requires activation before it becomes therapeutically

effective. This process is carried out by the catalase–peroxi-

dase activity of the katG gene product, and mutations in the

katG gene contribute to resistance to INH [12]. INH passively

diffuses through the mycobacterial envelope, where it is acti-

vated by MnCl2 and catalase–peroxidase of the katG possibly
e of isoniazid (formula
into an isonicotinoyl radical or anion. Modified INH appears

to covalently attach itself to nicotinamide adenine

dinucleotide (oxidized) (NAD+) to form an INH–NAD adduct,

which inhibits the synthesis of mycolic acid. Stigliani et al.

[13] studied the binding of the tautomeric forms of INH–

NAD adducts to the active site of InhA and noted that the

4S-chain adduct is the effective active form of the INH–NAD

adducts. Mahapatra et al. [14] in their mass spectrometry

study isolated a novel metabolite—4-isonicotinoylnicotina

mide (4-INN), a truncated part of the INH–NAD adduct—from

urine samples of human TB patients who received INH ther-

apy. The truncated INH–NAD+ adduct with some structural

similarity to 4-INN was evaluated as an effective inhibitor of

InhA. Their test results indicated antimycobacterial activities

for the truncated INH–NAD+ adduct [15]. It has previously

been shown that INH is activated to the INH–NAD adduct by

katG of MTB. This truncated INH–NAD adduct then binds to

InhA [2-trans-enoyl-acyl carrier protein-(ACP) reductase] and

eventually causes inhibition by computational approach [16].

Interestingly, arylamine N-acetyltransferase (NAT), a drug-

metabolizing enzyme of MTB, can acetylate INH, transferring

an acetyl group from acetyl coenzyme A to the terminal

nitrogen of the drug, which in its N-acetylated form is

therapeutically inactive [12]. The overexpression of NAT in

Mycobacterium smegmatis showed increased resistance to INH

[17]; in addition, when the gene was knocked-out, the bacteria

exhibited increased sensitivity to INH [18]. Therefore, it is

likely that NAT competes with katG for INH [19] (Fig. 2).

High-affinity INH–NAD(P)-binding proteins

Both nicotinamide adenine dinucleotide (reduced)-dependent

enoyl-(ACP) reductase [NADH-dependent enoyl-(ACP) reduc-

tase; InhA] and the nicotinamide adenine dinucleotide

phosphate-dependent dihydrofolate reductase (DHFR; DfrA)

have been shown to be inhibited by the INH–NAD(P) adducts

with nanomolar affinity. Argyrou et al. [20] have shown that

in addition to InhA and DfrA, 15 other proteins bind these

adducts coupled to Sepharose resin with high affinity

(Table 1).
: C6H7N3O; molecular weight: 137.139 g/mol).



Table 1 – High-affinity INH–NAD(P)-binding proteins from Mycob

Locus Name Str

Rv3248c S-adenosyl-L-homocysteine hydrolase 3D

Rv0753c Methylmalonate-semialdehyde dehydrogenase —
Rv1187 Pyrroline-5-carboxylate dehydrogenase (RocA) 4IH
Rv0155 NAD(P) transhydrogenase subunit alpha —

Rv2623 Universal stress protein 3CI

Rv1996 Hypothetical protein —
Rv0468 3-Hydroxybutyryl-CoA dehydrogenase —
Rv1484 Enoyl-ACP reductase 1P4

Rv2691 TRK system potassium-uptake protein CEOB —
Rv0091 Bifunctional 5-methylthioadenosine

nucleosidase/S-adenosylhomocysteine
nucleosidase

—

Rv2858c Aldehyde dehydrogenase —
Rv1059 Hypothetical protein —
Rv3777 Oxidoreductase —

Rv2971 Oxidoreductase 4O

Rv2766c 3-Ketoacyl-ACP reductase —

Rv2671 Hypothetical protein —
Rv2763c Dihydrofolate reductase 4K

Note: ACP = acyl carrier protein; ATP = adenosine triphosphate; CoA = coen

(reduced); NADP = nicotinamide adenine dinucleotide phosphate; CEOB

Transporter.

Fig. 2 – Schematic showing the activation and inactivation of

INH [12]. INH is a prodrug and requires activation by the

catalase– peroxidase protein (the KatG gene product). The NAT

enzymes can N-acetylate INH, rendering the drug therapeu-

tically inactive. The asterisk next to the terminal nitrogen in

the active form of INH denotes a range of oxidized species [19].

Note: INH = isoniazid; NAT = N-acetyltransferase.
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Of 17 proteins, six proteins [adenosylhomocysteinase

(Rv3248c), universal stress protein (Rv2623), NADH-

dependent enoyl-(ACP) reductase (Rv1484), oxidoreductase

(Rv2971), DHFR (Rv2763c), and pyrroline-5-carboxylate

dehydrogenase (Rv1187)] have known experimentally deter-

mined three-dimensional (3D) structure available at the

Protein Data Bank (PDB). Mahapatra et al. [14] observed that

the formation of 4-INN (a truncated INH–NAD adduct)

occurred due to spontaneous hydrolysis of the INH–NAD+

adduct under in vitro INH activation condition, and this com-

pound has potential antimycobacterial activity. In this study,

we explored the interaction of the truncated INH–NAD

adduct with these six proteins through molecular docking

analysis.

Materials and methods

Hardware and software

The study was carried out on a Dell workstation with a

2.26-GHz processor, 6-GB RAM, and 500-GB hard drive running

a Windows operating system. Bioinformatics software,

such as AutoDock4.2, and online resources were used in this

study.
acterium tuberculosis.

ucture Function

HY Thioester hydrolase acting on ether bounds. Could
be involved in methionine and selenoamino acid
metabolisms
Plays a role in valine and pyrimidine metabolism

I Involved in the arginase pathway
Involved in the transhydrogenation between NADH
and NADP, which is coupled to respiration and ATP
hydrolysis

S May play a role in the establishment of a persistent
infection (latency) in the host, as strains without
this gene are hypervirulent.
Function unknown
Butyrate/butanol-producing pathway

4 This isozyme is involved in mycolic acid
biosynthesis
Part of a potassium-transport system
Responsible for cleavage of the glycosidic bond in
both 5 0-methylthioadenosine and S-
adenosylhomocysteine
Oxidizes a wide variety of aldehydes
Function unknown
Function unknown; probably involved in cellular
metabolism

TK Function unknown; probably involved in cellular
metabolism
Function unknown; possibly involved in cellular
metabolism
Involved in riboflavin biosynthesis

L9 Involved in an essential step for de novo glycine and
purine synthesis

zyme A; INH = isoniazid; NADH = nicotinamide adenine dinucleotide

= complement the E. coli OxyR-knockout mutant type B; TRK = K+



Fig. 3 – Docking interaction of truncated INH–NAD adduct with (A) Rv2971, (B) Rv2623, (C) Rv3248c, (D) Rv1484, (E) Rv2763c, and

(F) Rv1187 showing hydrogen bonds in dotted lines. Note: INH = isoniazid; NAD = nicotinamide adenine dinucleotide.
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High-affinity INH–NAD(P)-binding proteins of MTB

High-affinity INH–NAD(P)-binding proteins of MTB (Rv2623,

Rv3248c, Rv2971, Rv2763c, Rv1484, and Rv1187) are reported

to have high binding affinity for INH–NAD(P) [20]. The experi-

mentally determined structures of these proteins obtained

through X-ray diffraction experiment are available at the

PDB. The 3D structures of Rv2623 (PDB ID 3CIS), Rv3248c

(PDB ID 3DHY), Rv2971 (PDB ID 40TK), Rv2763c (PDB ID

4KL9), Rv1484 (PDB ID 1P44), and Rv1187 (PDB ID 4IHI) were

retrieved from PDB for the docking study.

Ligand preparation

Because the 3D conformer generation of the INH–NAD adduct

is disallowed due to too many atoms [21], the PRODRG2 server

[22] was used to obtain the chemical structure of the trun-

cated INH–NAD adduct in PDB format.

Protein–ligand docking

Protein–ligand docking studies were performed using

AutoDock4.2 [23]. This is one of the most widely used methods

for protein–ligand docking. All the preprocessing steps for

ligand and protein files were performed using the AutoDock

Tools 1.5.4 program (ADT), which had been released as an

extension suite to the Python Molecular Viewer [23]. The ADT

program was used to prepare receptor molecules [high-affinity

INH–NAD(P)-binding proteins of MTB] by adding all hydrogen

atoms to carbon atoms of the receptor; in addition, Kollman

charges were also assigned. For docked ligands, nonpolar hydro-

gens were also added. Gasteiger charges were assigned and tor-

sions degrees of freedom were allocated by the ADT program.

The Lamarckian genetic algorithm (LGA) was applied to

model the interaction pattern between receptors and ligand.

The grid maps representing the receptor proteins in the docking

process were prepared using AutoGrid (part of the AutoDock

package). A grid of 40, 40, and 40 points in the x, y, and z direc-

tions was centered on the known active-site residues of each

protein. For all docking procedures, 10 independent genetic

algorithm (GA) runs with a population size of 150 were consid-

ered for each molecule studied. A maximum number of

25 · 105 energy evaluations; 27,000 maximum generations; a

gene mutation rate of 0.02, and a crossover rate of 0.8 were used

for LGA [16]. The AutoDock program was run to prepare the cor-

responding docking log (.dlg) file for further analysis.

Visualization

The visualization of structure files was carried out using the

graphical interface of the ADT program and PyMol molecular

graphics system (www.pymol.org).

Results

Docking analysis of high-affinity INH–NAD(P)-binding
proteins of MTB and truncated INH–NAD adduct

In this study, docking analysis was performed between

selected INH–NAD(P)-binding proteins and truncated
INH–NAD adduct around known active-site residues of

respective proteins. Among the six selected proteins, the

truncated INH–NAD adduct binds to Rv2971 (Fig. 3A) with

lowest binding energy of �7.07 kcal/mol and with inhibition

constant of 6.62 lM (Table 2). The docking of Rv2623 with

the truncated INH–NAD adduct was performed around

reported substrate-binding-site residues Asp167 and Asp198.

The adduct binds to Rv2623 with binding energy of

�7.06 kcal/mol and inhibition constant of 6.72 lM. It forms

three hydrogen bonds with these binding-site residues

(Fig. 3B). Glu218, Lys248, and Asp252 are known binding-site

residues of Rv3248c. Rv3248c binds to the truncated INH–

NAD adduct (Fig. 3C) with binding energy of �7.05 kcal/mol

and inhibition constant of 6.83 lM. We also performed a dock-

ing analysis between InhA and truncated INH–NAD adduct

around known substrate-binding residue Tyr158 [24]. The

truncated INH–NAD adduct binds to InhA with binding energy

of –6.86 kcal/mol and with inhibition constant of 9.30 lM. It

also formed one hydrogen bond with known binding-site resi-

due Tyr158 (Fig. 3D).

The other two proteins (Rv2763c and Rv1187) interact with

the truncated INH–NAD adduct (Fig. 3E and F) with binding

energy of �6.42 and �5.29 kcal/mol, respectively, and inhibi-

tion constant of 19.57 and 132.67 lM, respectively.
Discussion

Mahapatra et al. [14] observed the formation of a truncated

INH–NAD adduct due to spontaneous hydrolysis of the INH–

NAD+ adduct under in vitro INH activation condition and sta-

ted that there was a possibility of enzymatic hydrolysis of the

INH–NAD+ adduct in vivo, because of the presence of several

NAD-degrading enzymes in mammals. Thus, to study the

potential antimycobacterial activity of the truncated INH–

NAD adduct, we applied the same principle for the docking

analysis of MTB enzymes with the reported INH–NAD-

binding proteins using AutoDock4.2. The scoring algorithm

of AutoDock signifies that lower the binding energy (binding

energy is given in the negative sign) better the binding affinity

[25]. AutoDock is tested as reliable software to precisely pre-

dict the binding affinity of a ligand to a protein [23,25]. Of

the six selected proteins, three proteins, namely, Rv2971 (oxi-

doreductase), Rv2623 (universal stress protein), and Rv3248c

(S-adenosyl-L-homocysteine hydrolase), were found to inter-

act with the truncated INH–NAD adduct with almost similar

binding energies (Table 2).

The protein Rv2971 belongs to the aldo–keto reductases

family of MTB and plays an important role in the detoxifica-

tion of toxic metabolites. Recently, it has been reported as a

new target of INH [26], which correlates with our docking

study results, which showed inhibition of its activity by the

truncated INH–NAD adduct with minimum binding energy

of �7.07 kcal/mol. A universal stress protein encoded by

MTB Rv2623 helps in regulation of mycobacterial growth both

in vitro and in vivo [24]. It also binds adenosine triphosphate

(ATP) and may function as an ATP-dependent signaling inter-

mediate in a pathway that promotes persistent infection [24].

Jain et al. [27] also suggested Rv2623 as a potential biomarker

for the diagnosis of the latent as well as active MTB

http://www.pymol.org


Table 3 – Amino acid residues in the active site of INH–NAD-binding proteins.

Protein Active-site residues Known
catalytic triad

Acidic Basic Nucleophilic Neutral
(polar) Uncharged

Aromatic Aliphatic
(nonpolar)
neutral

Rv2971 Asp52
Glu274

Arg273,
Lys82,
His115

Tyr57,
Tyr194,
Tyr279,
Gln168,
Ser146,
Asn147,
Trp116,
Thr282

Trp116 Ala56 Tyr, Lys, Asp
(Reported in [32])

Rv2623 Asp198,
Asp167

Arg266,
Arg264,
His194

Ser172,
Pro245

Gly165,
Gly265,
Val166,
Val277,
Leu193,
Leu249,
Ala195

Rv3248c Asp156,
Asp252,
Glu218

His69,
His416,
Lys248

Thr219,
Asn409,
Asn253,
Ser424,
Thr71

Phe425 Val286,
Met421,
Gly415,
Leu68,
Leu410,
Leu407

Lys248,
Asp252,
Asn253
(Probable)

Rv1484 Asp148 Lys165 Tyr158,
Pro193,
Thr196

Tyr158,
Phe149

Met147,
Met199,
Ala191,
Ile194,
Gly192

Tyr158,
Lys165,
Phe149
(Reported in [33])

Rv2763c Asp27,
Glu111

His30,
Arg23

Thr113,
Gln28,
Tyr100,
Trp6

Phe31 Lue24,
Ile5,
Ala7

His30,
Asp27
(Probable)

Rv1187 Asp244 His272,
Lys212

Thr269,
Trp276,
Tyr184,
Ser249

Phe246 Ile186,
Gly245,
Leu273,
Leu253

Table 2 – Docking analysis of the truncated INH–NAD adduct with MTB Proteins.

Locus Protein Known active-site residues Binding energy
(kcal/mol)

Inhibition
constant (lM)

Rv2971 Oxidoreductase Tyr57
His115

�7.07 6.62

Rv2623 Universal stress protein Asp167, Asp198 �7.06 6.72
Rv3248c S-adenosyl-L-homocysteine

hydrolase
Thr71, Asp156,
Glu218,
Lys248,
Asp252,
Asn253,
Glu305,
Asn340,
Asn409

�7.05 6.83

Rv1484 NADH-dependent enoyl-(ACP)
reductase

Tyr158 �6.86 9.30

Rv2763c Dihydrofolate reductase Asp27, Arg32, Arg60,
Gly80, Tyr100, Thr113

�6.42 19.57

Rv1187 Pyrroline-5-carboxylate
dehydrogenase

Lys212, Ser249,
Cys327, Phe427

�5.29 132.67

Note: ACP = acyl carrier protein; INH = isoniazid; MTB = Mycobacterium tuberculosis; NAD = nicotinamide adenine dinucleotide;

NADH = nicotinamide adenine dinucleotide (reduced).
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infections. In silico inhibition of Rv2623 by the truncated INH–

NAD adduct with formation of H-bond with the ATP-binding-

site residues of the Rv2623 suggests the truncated adduct as

possible inhibitor of the protein. Rv3248c codes S-adenosyl-

L-homocysteine hydrolase (Mtb-SahH) in MTB, which is an

essential enzyme for optimal growth of the pathogen and is

involved in intermediary metabolism. Singhal et al. [28] also

revealed its involvement in regulating homocysteine concen-

tration in surrogate host M. smegmatis [28]. The truncated

adduct also observed to inhibit Rv3248c. INH was reported

to act on MTB by inhibiting a 2-trans-enoyl-(ACP) reductase

(InhA), which is encoded by Rv1484 [4]. The INH–NAD adduct

was also demonstrated to be a capable InhA inhibitor [29,30].

This in silico docking study correlates with an earlier in vitro

study by Nguyen et al. [30], who reported the INH–NAD adduct

as a powerful inhibitor of InhA. MTB DHFR encoded by

Rv2763c was reported as an essential enzyme for nucleic acid

synthesis. Argyrou et al. [20] observed the inhibition of MTB

DHFR by acyclic 4R isomer of the INH–nicotinamide adenine

dinucleotide phosphate adduct. The pyrroline-5-carboxylate

dehydrogenase encoded by Rv1187 was shown to be involved

in the proline-utilization pathway in MTB and this pathway

could be a valuable therapeutic target against TB [31]. All

the six proteins of MTB are found to be essential for the

pathogenic organism and our in silico docking study also

revealed the effective inhibition of these proteins by the trun-

cated INH–NAD adduct, which can explain the effectiveness

of INH as an anti-TB drug.

Further, upon active-site analysis of these six proteins, we

observed that of the six proteins, two proteins (Rv2971 and

Rv1484) have known catalytic triad in their active site

(Table 3). Three amino acids (Tyr57, Lys82, and Asp52) were

reported as catalytic triad in Rv2971 [32], whereas Tyr158,

Lys165, and Phe149 act as catalytic triad in Rv1484 [33]. A cat-

alytic triad usually refers to the three amino acid residues

that function together at the center of the active site of cer-

tain hydrolases and transferases (e.g., proteases, amidases,

esterases, acylases, lipases, and b-lactamases). Gupta et al.

[34] observed that in case of catalytic triad, the hydrogen bond

distance between the Hc atom nucleophilic residue (such as

Ser Hc) and Ne2 atom of basic residue (such as His) is more

flexible in nature and varied from 2.0 to 2.7 Å, whereas the

distance between Hd1 of basic (such as His) and Od1 of acidic

residues (e.g., Asp) varied from 1.6 to 2.0 Å. Based on the

H-bond distance criteria, two other proteins, namely,

Rv3248c and Rv2763c, are proposed to have probable catalytic

triad (Table 3). The catalytic triad may have some important

role in INH binding and needs to be further investigated.

Conclusion

We have applied the computational approach to study the

interaction between truncated INH–NAD adduct and INH–

NAD(P)-binding proteins. The in silico docking study revealed

that the truncated adduct might indeed bind to the selected

proteins. Further, the interaction between the truncated

adduct and these proteins indicates the presence of a cat-

alytic triad in the active site of some of these proteins, which

may possibly play a role in INH binding, but this needs further
investigation. In this study, we have included only those pro-

teins with known experimentally determined 3D structure.

The interaction of other INH–NAD(P)-binding proteins, whose

3D structures are not available, needs to be explored further

to understand the mechanism of action of INH as an anti-

TB drug acting on multiple enzymes.
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