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ABSTRACT: Forecasting of municipal waste generation is a critical challenge for decision making and planning,
because proper planning and operation of a solid waste management system is intensively affected by municipal
solid waste (MSW) streams analysis and accurate predictions of solid waste quantities generated. Due to
dynamic and complexity of solid waste management system, models by artificial intelligence can be a useful
solution of this problem. In this paper, a novel method of Forecasting MSW generation has been proposed.
Here, support vector machine (SVM) as an intelligence tool combined with partial least square (PLS) as a
feature selection tool was used to weekly prediction of MSW generated in Tehran, Iran. Weekly MSW
generated in the period of 2008 to 2011 was used as input data for model learning. Moreover, Monte Carlo
method was used to analyze uncertainty of the model results.  Model performance evaluated and compared by
statistical indices of Relative Mean Errors, Root Mean Squared Errors, Mean Absolute Relative Error and
coefficient of determination. Comparison of SVM and PLS-SVM model showed PLS-SVM is superior to
SVM model in predictive ability and calculation time saving. Also, results demonstrate which PLS could
successfully identify the complex nonlinearity and correlations among input variables and minimize them. The
uncertainty analysis also verified that the PLS-SVM model had more robustness than SVM and had a lower
sensitivity to change of input variables.
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INTRODUCTION
Prediction of solid waste generation is the initial

and major important step in planning and operation of
MSW management system (Chang and Lin, 1997; H.W.
Chen, 2000; Thanh and Matsui, 2011; Arshad et al.,
2011; Nouri et al., 2011; Hyun et al., 2011). Nowadays,
various models have been proposed to forecast short
and long term MSW generation which demonstrate
difficulty of problem (Beigl and Lebersorger, 2009;
Maqbool et al., 2011; Chen et al., 2011; Safari et al.,
2011). Rapid waste generation growth, lack of
information, affection of variable and out of control
factors on waste generation cause the forecasting to
be a complex engineering problem especially in the
developing countries (Abdoli et al., 2012; Nada et al.,
2012; Rashidi et al., 2012; Shafieiyoun et al., 2012;
Mahmoudkhani et al., 2012). In conventional methods,
waste generation is characterized by percapita indices
with respect to the demographic and socioeconomic
factors (Grossman D, 1974; Mukherjee, 1997; Niessen
WR, 1972). These models can be applied to the situation
in which underlying relationships have not significantly
changed over time. It means they don’t consider

dynamic properties in the process of MSW generation
and consequently the process must be fully
characterized.  However, there are attempts which use
the current information about input variables to
forecast the future (Chang and Lin, 1997; Chang et al.,
1993). But many developing countries may not have
sufficient budget and management task force available
to maintain a long-term and large-scale sampling and
analysis program. On the other hand, classic statistical
models such as most commonly used multiple
regression models cannot learn from new data and
their precision is poor when inaccurate data are used
to find information hidden in data and having a
universal approximation (Zhu and ReVelle, 1993 ;
Svozil, 1997; Blasco et al., 1998). Based on the
advantages of intelligence models, they become
popular and are inherently interested in all sciences
also solid waste management (Bayar et al., 2009; Dong
et al., 2003; Karaca and Ozkaya, 2006). In these models,
relation between input and output variables are first
found by a learning process and then future outputs
will be predicted. These data-driven models without
need of complete perception of MSW generation
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process have high ability to model waste generation
fluctuations. Noori et al. used artificial neural network
(ANN) for forecasting waste generation in Mashhad,
Iran (Jalili and Noori, 2008). Model results showed good
coincidence between empirical data and predictions.
However, ANN may not be able to precisely model
non-stationary data if preprocessing of the input and/
or output data is not performed. There are many data
selection and preprocessing methods which minimize
or convert inputs to useful information. Principal
component analysis (PCA), wavelet and Gamma test
were applied as data selection method in waste
generation prediction by Noori et al. (Noori et al., 2009).
The innate disadvantage such as over-fitting training,
local minimum, difficulty in determination of network
architecture and poor generalizing performance remain
unsolved and limit the application of the ANN approach
into practice. Support vector machine, another
intelligence model, developed by Vapnik can provide
an effective novel approach to improve both
generalization performance of neural networks and
achieve global solutions simultaneously (Vapnik, 1995).
Recently, the SVM e-insensitive type has been
extended to solve non-linear regression estimation and
time series prediction (Mukherjee, 1997; Broomhead,
1998; Vapnik, 1997a, b). To provide the acceptable
accuracy of prediction and speed calculations, data
reduction and variable selection can be applied for
preprocessing inputs of SVM. There are many data
reduction technique (Zhang et al., 2006; Zhang, 2007;
Corcoran, 2003; Wang, 2006). The method selected for
the present study is partial least square because it is
an unsupervised dimension reduction technique.
When the key area of application is multivariate
regression, there may be considerable improvement if
standardized liner combinations of predictive variables
are built to capture as much information in the raw
predictive variables as well as in the relation between
the predictive and target variables. PLS allows us to
achieve this balance and provide an alternate approach
to PCA technique (Saikat and Jun, 2008).

Moreover, understanding uncertainty in a model
is important to interpreting its results.  This becomes
especially important if the outcomes to be compared
are near one another in magnitude. Literature shows
that just a few methods proposed for determining the
uncertainty such as bootstrap, sandwich estimator,
maximum likelihood, and Bayesian inference which was
proposed by Marce and et al (2004). In order to provide
the uncertainty associated with the estimation of
MSWG, a Monte Carlo simulation was performed herein
due to its good performance (2007b; Aqil et al., 2007a).
Monte Carlo simulation is a flexible tool for performing
uncertainty analysis of data-driven models.

The aims of the study are to develop a novel method
for prediction of solid waste generation using hybrid
PLS-SVM model and analysis of uncertainty in the
model results.

MATERIALS & METHODS
Tehran, the capital of Iran, with population of

approximately 13 millions is the most important
metropolis and largest commercial and political centre
of the country. Daily waste generation in Tehran
amounts to over 7500 tons. The total solid waste
generated in Tehran during 2004 and 2005 was 2,614,904
and 2,626,519 tons respectively and the total amount
of MSW in these years was 2,561,069 and 2,570,988
tons respectively (Damghani et al., 2008). This amount
is 2.5-3 times more than other metropolises with the
same population. Management of this large quantity
of waste needs to prepare a suitable and precise model
for forecasting solid waste generation. In this paper,
weekly MSW generated in the period of 2008 to 2011
was used to learn the model.

To estimate the amount of generated waste in a
city, seasonal patterns are more effective and applicable
(Tchobanoglous, 1977). Therefore, weekly time series
with 12 time lags (equal to a season) were inputted to
the model. So the predicted waste amounts were based
on 12 previous time series.

Partial least square was proposed by Wold
originally (Wold, 1966). It can separate the information
and noise of the predictors or independent variables
(X). PLS works by successively extracting factors from
both X and responses or dependent variables (Y) such
that covariance between the extracted factors is
maximized. The technique of PLS is similar to Principal
component (PCA). It also produces linear combinations
of the original surface parameters. However, PLS and
PCA differ in the way they extract the principal
directions. PCA ignores the information in Y when
building the principal components and PLS produces
the directions reflecting the relationship between Y and
X. So, PLS results will have more practical meanings.

Assumed X is a matrix with n rows and p columns
and Y is a matrix with n rows and q columns. PLS
method can work with multivariate response variables
(i.e., when Y is an n×q vector with q>1). However,
here it supposed that Y is a single variable i.e., Y is n×1
and X is n×p. To build a PLS model, it is needed to
regress X onto the x-scores (T), which are used to
predict the y-scores (U), which in turn are used to
predict the responses Y. Thus X=TPT + E and Y=UQT +
F, where Tn×r is X-scores, Un×r is Y-scores, Pp×r is X-
loadings, Q1×r is Y-loadings, En×p is X- residuals an Fn×1
is Y-residuals. Decomposition is finalized so as to
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maximize covariance between T and U. The solution of
this optimization problem can be found below (Lorber
et al., 1987; Wold et al., 1984). On eigenvalue
decomposition process, the first extracted T and U are
of the form T=X.w and U=Y.c, where w and c are the
eigenvectors corresponding to the first eigenvalue of
XTYYTX and YTXXTY, respectively. It is noted XTY denotes
the covariance of X and Y. Once the first factors have
been extracted the original values of X and Y are deflated
as: X1=X – ttTX and Y1=Y- ttTY. The above process is
now repeated to extract the second PLS factors. The
process continues until all possible latent variables
have been extracted T and U. More details of the PLS
procedure can be found in Geladi and Kowalski (Geladi,
1986).

A brief description of the underlying principle of
Support vector machine (SVM) is presented here and
more details are described in literature (Vapnik, 1995,
1997a, 1998). In support vector machine, the input data
is first mapped into high dimensional feature space by
the use of kernel function and then linear regression is
performed in the feature space. The non-linear feature
mapping will allow the treatment of non-linear problems
in a linear space. After training on set data SVM can be
used to predict the objects whose values are unknown.
A regression SVM model estimates the functional
dependence of the dependent variable Y on a set of
independent variables x. It assumes, like other
regression problems, that the relationship between the
independent and dependent variables is given by a
deterministic function f(x). Considering a set of training

data )},(),....,,{( 11 ll yxyx , where each n
i Rx ⊂

denotes the input space of the sample and has a

corresponding target value Ryi ⊂  for i=1,…, l where
l corresponds to the size of the training data (Vapnik,
1995; Müller et al., 1997). The idea of the regression
problem is to determine a function that can approximate
future values accurately.

b))x(w()x(f +⋅= Φ                                     (1)

Where w , b and Φ denotes a non-linear

transformation from nR  to high dimensional space.

The goal is to find the value of w  and b  such that
values of x  can be determined by minimizing the
regression risk:
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Where )(⋅Γ  is a cost function, C is a constant and
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By substituting equation (3) into equation (1), the
generic equation can be rewritten as:
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In equation (4) the dot product can be replaced with

function ),( xxk i , known as the kernel function.
Kernel functions enable dot product to be performed
in high-dimensional feature space using low
dimensional space data input without knowing the
transformationΦ . All kernel functions must satisfy
Mercer’s condition that corresponds to the inner
product of some feature space. The radial basis
function (RBF) is commonly used as the kernel for
regression:

{ }2exp),( ii xxxxk −−= γ (5)

Theε -insensitive loss function is the most widely used
cost function (Müller et al., 1997) . The function is in
the form:
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By solving the quadratic optimization problem in (7),
the regression risk in equation (2) and the ε -
insensitive loss function (6) can be minimized:
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The Lagrange multipliers, *
ii andαα , represent

solutions to the above quadratic problem that act as

forces pushing predictions towards target value iy .
Only the non-zero values of the Lagrange multipliers
in equation (7) are useful in forecasting the regression
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line and are known as support vectors. For all points
inside theε -tube, the Lagrange multipliers equal to
zero do not contribute to the regression function. Only
if the requirement ε≥− yxf )(

 
is fulfilled, Lagrange

multipliers may be non-zero values and used as support
vectors.
The constant C introduced in equation (2) determines
penalties to estimation errors. A large C assigns higher
penalties to errors so that the regression is trained to
minimize error with lower generalization while a small C
assigns fewer penalties to errors; this allows the
minimization of margin with errors, thus higher
generalization ability. If C goes to infinitely large, SVR
would not allow the occurrence of any error and result
in a complex model, whereas when C goes to zero, the
result would tolerate a large amount of errors and the
model would be less complex.
Now, the value of w  is solved in terms of the Lagrange
multipliers. For the variable b , it can be computed by
applying Karush-Kuhn-Tucker (KKT) conditions
which, in this case, implies that the product of the
Lagrange multipliers and constrains has to equal zero:

and
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Where iζ and *
iζ are slack variables used to measure

errors outside the ε -tube. Since 0, * =ii αα  and 0* =iζ

for bCi ),,0(* ∈α can be computed as follows:
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Putting it all together, SVM can be used without
knowing the transformation.

The Monte Carlo method is just one of many
methods for analyzing uncertainty propagation, where
the goal is to determine how random variation, lack of
knowledge, or error affects the sensitivity, performance,
or reliability of the system that is being modeled. Monte
Carlo method is a technique that involves repeatedly
forming a random vector of parameters from prescribed
probability distributions, evaluating the function, and
then computing the statistics of the evaluated function.

In this research, uncertainty analysis was performed
as follows:
Step 1: 1000 times randomly rearranged the database
without replacement since the ratio between the
training and validation sets was kept fix. Thus, 1000
weekly MSWG series were generated,
Step 2: 1000 different results for each forecasted weekly
MSWG were obtained by SVM and PLS-SVM models.
Step 3: the resulting statistical performances (mean,
median and variance) were collected, tabulated and
their distributions were plotted. It is to be noted that
only the 95% confidence intervals of estimation are
reported in this study due to the fact that confidence
intervals provide more information than other statistical
values about the range of prediction associated with
the model.  The 95% confidence intervals are
determined by finding the 2.5th and 97.5th percentiles
of the constructed distribution.

Suppose the current time is t, y(t+l) for the future
time t+l is predicted with the knowledge of the value
y(t-n), y(t-n+1),…, y(t) for past time t-n, t-n+1, …, t,
respectively.  The prediction function is expressed as:

 y(t+l) = f(t, y(t), y(t-1), …, y(t-n)) (11)

   As discussed above, in this study, next week waste
generation forecasted by 12 previous weekly waste
generation time series. Relative Mean Errors (RME),
Root Mean Squared Errors (RMSE), Mean Absolute
Relative Error (MARE) and coefficient of determination
(R2) are applied as performance indices.
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Where iY  is the observation value, iY  is the average

value and *
iY  is the predicted value.
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RESULTS & DISCUSSION
A kernel function has to be selected from the

qualified functions.  Radial basis function was applied
due to its benefits over other kernel functions (Han,
2004; Dibike et al., 2001). Additionally, many works in
modeling and forecasting have demonstrated the
successful application of the radial basis function in
support vector regression (Liong and Sivapragasam,
2002; Choy and Chan, 2003; Yu, 2004). The SVM
parameters (C capacity, ε and γ kernel-specific
parameter) are interdependent, and their (near) optimal
values are often obtained by a trial and error method.
Optimization of these parameters has been done by a
systematic grid search of the parameters using leave-
one-out cross-validation on the training set. In this
grid search, first, a broad range of parameters settings
are investigated with large steps. Here, optimized

values of C and ε for a specified γ were obtained and
then γ was changed.  Second, after identifying a
promising region, this region is searched in more detail.
The test set is used as an independent set to calculate
the final prediction error. Furthermore, the test error is
not used to select the optimal model but its size is
compared to test set errors with other settings to
identify possible overtraining.
RME, RMSE, MARE and R2 were used to find optimums.
The optimal parameters (C, ε, γ) = (150, 0.001, 0.6) were
obtained at RME=1467, RMSE=2070, MARE=0.027 and
R2=0.761. Fig. 1shows this optimal value.

75 percentages of total inputs were used for train
and rest of them was used for test. Observations
mapped via predictions in Fig. 2. Fig. 3 illustrate
coefficient of determination in training and test stage.

Fig. 1. Statistics indexes via ã values to find SVM optimums a) RME, b) RMSE, c) MARE and d) R2
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R2 = 0.761
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Fig. 3. Observations via predictions by the SVM model during a) train and b) test stages
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Fig. 2. Forecasting results of MSWGs by SVM model
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Table 1. Eigenvalues of PLS components

Component No.
Eigenvalue % Total variance

1 4.759 4.759 
2 2.246 2.246 
3 0.793 0.793 
4 0.508 0.508 

 

As seen in Fig. 3, SVM could forecast MSW
generation with coefficient of determination 0.761 and
coincidence between observations and predictions are
acceptable. It means SVM have a good ability for MSW
generation prediction.

In PLS method, number of components (NCs)
should be determined properly. Any method used for
determining NCs should take into account not only the
goodness of fit but also the complexity taken to achieve
that fit. In other words, when building model
components, a balance between NCs and the ability to
accurately predict data should be considered. A model
with an insufficient NC cannot predict the data
accurately enough. A model with too many components
has more components that it needs in predicting the
data. V-fold cross validation method can actually find
the optimal NC which completely described by Stone
and Brooks (Stone and Brooks, 1990).
Here, X scores produced by the plsregress function
in the Statistics Toolbox of MATLAB (R2009) were
used to predict MSWGs.

To find optimum number of components, V-fold
cross validation was applied. Here V set to 10. Then,
PLS has built four components which eigenvalues of
the components are illustrated in Table 1.

X-scores of these six components were replaced to
original data. It is noted, the components evolve 98%
variance.

The PLS-SVM optimal parameters were found by
similar procedure to SVM pointed at (C, ε, γ) = (215,
0.125, 0.077) as seen in Fig. 4. In addition, the model
results and coefficient of determination for training
and test stages of the model is shown in Fig. 5 and 6
respectively.
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Fig. 6. Observations via predictions by the PLS-SVM model during a) train and b) test stages

43000

48000

53000

58000

63000

0 20 40 60 80 100 120 140

Time (Week)

M
SW

G
 (t

on
)

Original MSWG Predicted by SVM

Fig. 5. Forecasting results of MSWGs by PLS-SVM model
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To compare results of  two SVM and PLS-SVM
models, discussed statistics indces were used which
illustrated in Table 2. As seen, PLS-SVM resulted in
fewer errors and higher coefficient of determination
than SVM. Moreover, computation for PLS-SVM took
less time than SVM model. The PLS-SVM method
produced acceptable results but error of both models
still remains considerable. Complexity of the MSW
management systems and many factors, which affected
MSW generation cause these errors. However, PLS-
SVM model achieve simpler model and faster training
speed. Obviously, the reduction of the input vector
dimensions is resulted in the reduction of SVM size
and shortening the SVM training periods. Therefore,
PLS-SVM model could be a better predictive model
than SVM. Alternatively, the proposed model can be
implemented as MSW generation annually or monthly.

The uncertainty in the estimates of the observed
and predicted weekly MSWG during the training and
test stages has been quantified by estimating the
confidence intervals of the simulation results. In this
research, the 95 percent prediction uncertainties
(95PPU) were calculated for forecasting models. This
is calculated by the 2.5th (XL) and 97.5th (XU)
percentiles of the cumulative distribution of every
simulated point. The goodness of fit is, therefore,
assessed by the uncertainty measures calculated from
the percentage of measured data bracketed by the

95PPU band, and the average distance 
xd between

Table 2. Comparison of SVM and PLS-SVM models during testing and training periods
SVM PLS-SVM 

Estimator Train Test Train Test 
RME 677 1467 316 1139 
RMSE 935 2070 499 1541 
MARE 0.012 0.027 0.006 0.021 
R2 

0.954 0.761 0.986 0.869 
Computation Time (s) 42 29 

 

where k is the number of observed data points. The
best outcome is that 100% of the measurements are

bracketed by the 95PPU, and 
xd is close to zero.

However, because of model uncertainty, the ideal
values will generally not be achieved. A reasonable
measure for, is calculated by the d-factor expressed as:

where σx is the standard deviation of the measured
variable X. A value of <1 is a desirable measure for the
d-factor.
Plot of confidence intervals of SVM and PLS-SVM for
Tehran are shown in Fig. 7a and (b) during the training
and testing stages. Moreover, Table 3 summarizes
result analysis of 1000 simulations for Tehran case
study.

As obviously seen in Fig. 7a and (b), both models
well predicted the changes of MSWG in Tehran. For
SVM model, the magnitudes MSWG, except at peaks,

x

xd
factord

σ
=−                                     (17)

∑= −=
k

1l LUx )XX(
k
1

d                                     (16)

Table 3. Forecasting performance during the training and the testing stages based on averages obtained from
1000 time simulations

PLS-SVM SVM 

Performance 
index 

Train Test Train Test 

xd 3724 4377 4258 5108 

d-factor 0 .33 0.46 0.41 0.57 

 

the upper and the lower 95PPU (or the degree of
uncertainty) determined from Eq. (17).
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CONCLUSION
Support vector machine and support vector regression
have demonstrated their success in time-series analysis
and statistical learning. However, little work has been
done in waste management also in forecasting waste
generation. In this paper, the feasibility of applying
support vector regression and data reduction were
examined for waste generation time series prediction.
After numerous experiments, a set of SVM parameters

were estimated closer to the observed data. However
PLS-SVM estimations were closer to the observed data
even at peaks. A similar trend was also found at the
testing stage although the magnitude of uncertainty
in the training stage was lower than that of the testing
stage and the magnitudes of lower and upper
confidence bounds are estimated closer to the observe
data in the training stage.

In addition, it was found from Table 3 the PLS-
SVM had lower uncertainty during training and test
stages. Higher value of d-factor of SVM shows that
this model is more sensible than PLS-SVM model to
training data. Consequently, the wide of 95PPU bond,

e.g.
xd, for PLS-SVM is smaller than for SVM. For

both models, 50% of the measurements were bracketed

40000

45000

50000

55000

60000

65000

70000

0 20 40 60 80 100 120 140

Time (Week)

M
SW

G
 (T
on

)
original MSWG

Upper confidence interval

Lower confidence interval 

Train

by the 95PPU. Because PLS-SVM creates lower bound,
numbers of observed data located on confidence bound
have no change. However, uncertainty of this model is
more reasonable on 95PPU than SVM. This shows that
PLS-SVM had more robustness, and had a lower
sensitivity to change of input variables than SVM.

40000

45000

50000

55000

60000

65000

70000

0 20 40 60 80 100 120 140

Time (Week)

M
SW

G
 (T
on
)

or iginal MSW G

Upper conf idence  interva l

Lower confidence inte rva l 

Train

Fig. 7. the estimates of MSWG during the training and test stages for 1000 simulations by a) SVM and b)
PLS-SVM



proposed that can predict MSW generation time series
very well. The results show that the SVM predictor
significantly outperforms the other baseline predictors.
This evidences the applicability of support vector
regression for forecasting MSW generation. Also, PLS
minimized input data and decreased error of final
modeling. Consequently, training finished very quickly
with acceptable correlation. Combination of SVM with
PLS produced a suitable model for MSW generation in
large cities like Tehran.

Meanwhile, the uncertainty associated with the
estimation of MSWG was estimated by Monte Carlo
simulations. The simulation results using 95%
confidence intervals indicated that estimations of the
SVM and PLS-SVM models were closer to the observed
data except in peak points. However PLS-SVM had
more robustness, and had a lower sensitivity to change
of input variables than SVM.

REFERENCES
Abdoli, M. A., Karbassi, A. R., Samiee-Zafarghandi, R.,
Rashidi, Zh., Gitipour, S.and Pazoki, M. (2012). Electricity
Generation from Leachate Treatment Plant, Int. J. Environ.
Res., 6 (2), 493-498.

Arshad, A., Hashmi, H . N. and Qureashi, I. A. (2011).
Anaerobic Digestion of CHLOrphenolic Wastes, Int. J.
Environ. Res., 5 (1), 149-158.

Bayar, S., Demir, I. and Engin, G. O. (2009). Modeling
leaching behavior of solidified wastes using back-propagation
neural networks. Ecotoxicology and Environmental Safety,
72 (3), 843-850.

Beigl, P. and Lebersorger, S. (2009). Forecasting Municipal
Solid Waste Generation for urben and rural regions. In R.
Cossu and R. Stegmann (eds.), twelfth International Waste
Management Landfill Symposium (pp. 27-38). Sardinia,
Italy, CISA Environmental Sanitary Engineering Center.

Blasco, J. A., Fueyo, N., Dopazo, C. and Ballester, J. (1998).
Modeling the temporal evolution of a reduced combustion
chemical system with an artificial neural network.
Combustion and Flame, 113, 38-52.

Broomhead, D. and Lowe, D. (1998). Multivariable
functional interpolation and adaptive networks. Complex
Systems, 2, 321-355.

Chang, N. B. and Lin, Y. T. (1997). An analysis of recycling
impacts on solid waste generation by time series intervention
modeling. Resources Conservation and Recycling. 19 (3),
165-186.

Chang, N. B., Pan, Y. C. and Haung, S. D. (1993). Time
series forecasting of solid waste generation. J Resour Manage
Technol, 21, 1-10.

Chen, H. W. and Chang, N. B. (2000). analysis of solid
waste generation based on grey fuzzy dynamic modeling
Resources, Conservation and Recycling, 29, 1-18.

Chen, J. Huang,W., Han, J. and Cao, Sh. (2011). The
Characterization and Application of Biological Remediation
Technology for Organic Contaminants, Int. J. Environ. Res.,
5 (2), 515-530.

Choy, K. Y. and Chan, C. W. (2003). Modelling of river
discharges and rainfall using radial basis function networks
based on support vector regression. International Journal of
Systems Science,  34 (14-15), 763-773.

Corcoran, J., Wilson, I. and Ware, J. (2003). Sparse support
vector regression based on orthogonal forward selection for
the generalised kernel model. International Journal of
Forecasting, 19, 623-634.

Damghani, A. M., Savarypour, G., Zand, E. and Deihimfard,
R. (2008). Municipal solid waste management in Tehran:
Current practices, opportunities and challenges. Waste
Management, 28 (5), 929-934.

Dibike, Y. B., Velickov, S., Solomatine, D. and Abbott, M.
B. (2001). Model induction with support vector machines,
Introduction and applications. Journal of Computing in Civil
Engineering, 15 (3), 208-216.

Dong, C. Q., Jin, B. S. and Li, D. J. (2003). Predicting the
heating value of MSW with a feed forward neural network.
Waste Management, 23 (2), 103-106.

Geladi, P. and Bruce, K. (1986). Partial least-squares
regression: a tutorial. Analytica Chimica Acta, 185, 1-17.

Grossman, D, H. J. and Mark, D. H. (1974). Waste
generation methods for solid waste collection. J. Environ.
Eng.,  6, 1219-1230.

Han, D. and Cluckie, I (2004). Support vector machines
identification for runoff modeling. In S. Y. Liong, Phoon,
K.K., Babovic, V (ed.), Proceedings of the Sixth International
Conference on Hydroinformatics, Singapore, 21–24 June
2004 (pp. 511-520). Singapore, Proceedings of the Sixth
International Conference on Hydroinformatics.

Hyun, I., Borinara, P. and Hong, K. D. (2011). Geotechnical
Considerations for End-Use of Old Municipal Solid Waste
Landfills, Int. J. Environ. Res., 5 (3), 573-584.

Jalili, G. Z. M. and Noori, R. (2008). Prediction of municipal
solid waste generation by use of artificial neural network: A
case study of Mashhad. International Journal of
Environmental Research, 2 (1), 13-22.

Karaca, F. and Ozkaya, B. (2006). NN-LEAP, A neural
network-based model for controlling leachate flow-rate in a
municipal solid waste landfill site. Environmental Modelling
& Software, 21 (8), 1190-1197.

Liong, S. Y. and Sivapragasam, C. (2002). Flood stage
forecasting with support vector machines. Journal of the
American Water Resources Association, 38 (1), 173-186.

Lorber, A., Kowalski, B. R. and Chemometrics, J. (1987). A
theoretical foundation for the PLS algorithm. Journal of
Chemometrics, 1, 19-31.

Int. J. Environ. Res., 7(1):27-38, Winter 2013

37



Mahmoudkhani, R., Hassani, A. H., Torabian, A. and
Borghei, S. M. (2012).Study on High-strength Anaerobic
Landfill Leachate Treatability By Membrane Bioreactor
Coupled with Reverse Osmosis, Int. J. Environ. Res., 6 (1),
129-138.

Maqbool, F., Bhatti, Z . A., Malik, A. H., Pervez, A. and
Mahmood, Q. (2011).Effect of Landfill Leachate on the
Stream water Quality, Int. J. Environ. Res., 5 (2), 491-500.

Mukherjee, S., Osuna, E. and Girosi, F. (1997). Nonlinear
prediction of chaotic time series using a support vector
machine. IEEE Workshop on Neural Networks and Signal
Processing. Amelia Island, FL.

Müller, K. R., Smola, A. J., Ra¨tsch, G., Schölkopf, B.,
Kohlmorgen, J. and Vapnik, V. (1997). Predicting Time Series
with Support Vector Machines. Proceedings of the 7th
International Conference on Artificial Neural Networks pp.
999-1004), Springer-Verlag.

Nada, W. M., Van Rensburg, L., Claassens, S., Blumenstein,
O. and Friedrich, A. (2012).Evaluation of Organic Matter
Stability in Wood Compost by Chemical and
Thermogravimetric Analysis, Int. J. Environ. Res., 6 (2),
425-434.

Niessen,  W. and Alsobrook, A. (1972). Municipal and
industrial refuse, composition and rates. Proceedings of
National Waste Processing Conference, pp. 112–117.

Noori, R., Abdoli, M. A., Farokhnia, A. and Abbasi, M.
(2009). Results uncertainty of solid waste generation
forecasting by hybrid of wavelet transform-ANFIS and
wavelet transform-neural network. Expert Systems with
Applications, 36 (6), 9991-9999.

Nouri, N., Poorhashemi, S. A., Monavari, S.M., Dabiri, F.
and Hassani, A. H. (2011). Legal Criteria and Executive
Standards of Solid Waste Disposal Subjected to Solid Waste
Management Act, Int. J. Environ. Res., 5 (4), 971-980.

Rashidi, Zh., Karbassi, A. R., Ataei, A., Ifaei, P., Samiee-
Zafarghandi, R. and Mohammadizadeh, M. J. (2012). Power
Plant Design Using Gas Produced By Waste Leachate
Treatment Plant, Int. J. Environ. Res., 6 (4), 875-882.

Safari, E., Jalili Ghazizade, M., Shokouh, A. and Nabi
Bidhendi, Gh. R. (2011). Anaerobic Removal of COD from
High Strength Fresh and Partially Stabilized Leachates and
Application of Multi stage Kinetic Model, Int. J. Environ.
Res., 5 (2), 255-270.

Saikat, M. and Jun, Y. (2008). Principle Component Analysis
and Partial Least Squares: Two Dimension Reduction
Techniques for Regression. Casualty Actuarial Society.
Arlington, Virginia, 79-90.

Shafieiyoun, S., Ebadi, T. and Nikazar M. (2012). Treatment
of Landfill Leachate by Fenton Process with Nano sized
Zero Valent Iron particles, Int. J. Environ. Res., 6 (1), 119-
128.

Stone, M. and Brooks, R. J. (1990). Continuum regression:
cross-validated sequentially constructed prediction
embracing ordinary least squares, partial least squares and
principal components regression. Journal of the Royal
Statistical Society, 52, 237-269.

Svozil, D., Kvasnicka, V. and Pospichal, J . (1997).
Introduction to multilayer feed-forward neural networks.
Chemometrics and Intelligent Laboratory Systems, 39, 43-
62.

Vapnik, V. (1995). Nature of Statistical Learning Theory.
Springer. New York.

Tchobanoglous, G., Eliaseen, R. and Theisen, H. (1977).
Solid Waste: Engineering principles and Management. Tokyo,
McGraw Hill.
Thanh, N. P. and Matsui, Y. (2011). Municipal Solid Waste
Management in Vietnam: Status and the Strategic Actions,
Int. J. Environ. Res., 5 (2), 285-296.

Vapnik, V. (1998). Statistical Learning Theory. Wiley. New
York.

Vapnik, V., Golowich, S. and Smola, A. (1997a). Support
method for function approximation regression estimation,
and signal processingReport, MIT Press, Cambridge, MA.

Wang, X. X., Chen, S., Lowe, D. and Harris, C. J. (2006).
Artificial neural networks based on principal component
analysis input selection for quantification in overlapped
capillary electrophoresis peaks.Chemom. Intell. Lab. Syst.,
82, 165-175.

Wold, H. (1966). Estimation of principal components and
related models by iterative least squares. In P. R. Krishnaiaah
(ed.), Multivariate analysis pp. 391-420). New York,
Academic Press.

Wold, S., Ruhe, A., Wold, H. and Dunn, W. (1984). The
collinearity problem in linear regression, the partial least
squares (PLS) approach to generalized inverses. Journal of
Statistics Computation, 5, 735-743.

Yu, X., Liong, S.-Y. and Babovic, V. (2004). EC-SVM
approach for realtime hydrologic forecasting. Journal of
Hydroinformatics, 6 (3), 209-223.

Zhang, Y. X., Li, H., Hou, A. X. and Havel, J. (2006).
Artificial neural networks based on principal component
analysis input selection for quantification in overlapped
capillary electrophoresis peaks. Chemometrics and
Intelligent Laboratory Systems, 82 (1-2), 165-175.

Zhang, Y. X. (2007). Artificial neural networks based on
principal component analysis input selection for clinical
pattern recognition analysis. Talanta, 73 (1), 68-75.

Zhu, Z. and ReVelle, C. (1993 ). A cost allocation method
for facilities siting with fixed-charge cost functions. Civil
Engineering Systems, 7, 29-35.

Forecasting Municipal Solid waste Generation

38


