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Abstract Natural killer (NK) cells constitute our bodies’ frontline defense system, guarding against tumors and

launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors

expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is

relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here,

we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss

the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma,

autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy.
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Pathogen invasion in our body is counteracted
by both adaptive and innate immune cells.
The adaptive immune system is represented

by B and T cells. B cells play a major role in the
humoral immune response, whereas T cells are pri-
marily involved in cell-mediated immune responses.
The innate immune system consists of cells and pro-
teins that play a crucial part in the initiation and sub-
sequent activation of the adaptive immune system.
They also participate in the removal of pathogens that
have been targeted by an adaptive immune response.
The main components of the innate immune system
are physical epithelial barriers, phagocytic leukocytes,
dendritic cells, and natural killer (NK) cells.

NK cells are crucial components of the innate
immune system and, as the name suggests, they do
not require pre-stimulation to perform their effector
functions.1 Morphologically, they are characterized
as large, granular, bone marrow-derived lymphocytes
and phenotypically, they are defined as CD56+

CD3� in humans. They represent 10% of the cells
in the total peripheral blood mononuclear cell
(MNC) population of circulating human lymphocytes
and they comprise the third largest population of lym-
phocytes following B and T cells. They are also found
in the peritoneal cavity, spleen, liver, lung, lymph
nodes, thymus, and in uterus during gestation.
NK-CELL DEVELOPMENT

It is generally accepted that NK cells develop primar-
ily in the bone marrow, similar to B cells and myeloid
origin cells. However, recent studies have shown that
NK cells can also develop in lymph nodes and liver.2,3

The generation of NK cells from hematopoietic stem
cells (HSC) is a continuous process. In the first step,
the HSC shows commitment towards NK-cell line-
age. NK-cell precursors (NKP) have been identified
in the hematopoietic population, which differentiates
into NK cells but not to other lineages. This process
is followed by phenotypic and functional NK-cell
maturation. In the final step, NK cells undergo
homeostasis. Several transcription factors as well as
soluble and membrane factors have been identified
that regulate NK-cell development and maturation.
Transcription factors involved in the generation of
NKP include Ets-1, Id2, Ikaros and PU.1.4,5 Matura-
tion of immature NK cells is regulated by Gata-3 and
IRF-2 and functional differentiation of matured NK
cells involves CEBP-c, MEF and MITF. The
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cytokine IL-15 has been shown to be essential for
NK-cell development, homeostasis and survival.6

Studies by Freud and Ferlazzo have implicated the
role of T cell derived IL-2 in the cytolytic functional
maturation of NK cells.2,7
NK CELL FUNCTION

Natural killer cells have diverse biological functions
which include recognizing and killing virally-infected
and neoplastic cells. Circulating NK cells are mostly
in their resting phase but activation by cytokines leads
to infiltration of these cells into most tissues that con-
tain pathogen-infected or malignant cells.8,9 NK cells
also have an immunoregulatory role as they secrete
several cytokines, such as interferon (IFN)-c, follow-
ing their ligand interaction with cell-surface receptors.
Human NK cells can be classified into two subsets,
depending on their immunophenotype and function:
CD56dim and CD56bright. CD56dim constitutes 90%
of the total NK cell population in peripheral blood
and these express a low-affinity receptor for the con-
stant region of immunoglobulin G, Fc c RIIIa
(CD16).10 Functionally, these have high cytotoxic
activity. Approximately 10% of NK cells belong to
the CD56bright subset and they are mostly involved
in the production of cytokines.

The NK cells in the secondary lymphoid tissue
such as tonsils, lymph nodes, and spleen are different
from the NK cells in the peripheral blood as these are
activated by dendritic cells and they secrete cytokines
such as interferon, which stimulate a more efficient
killing response by the T cells.7,11

NK-cell functioning is controlled by a wide range
of receptors that are expressed on the cell surface.
These receptors are either inhibitory or activating in
nature. The family of inhibitory receptors consists
of the killer immunoglobulin-like receptors (KIR) or
Ig-like receptors (CD158), the C type lectin receptors
(CD94-NKG2A) and leukocyte inhibitory receptors
(LIR1, LAIR-1). Activating receptors are the natural
cytotoxicity receptors (NKp46, NKp44), C type lec-
tin receptors (NKG2D, CD94-NKG2C), and Ig-like
receptors (2B4). A particular NK cell typically
expresses two to four inhibitory receptors in addition
to an array of activation receptors. As different NK
cells express different combinations of inhibitory or
activating receptors, there is sizeable heterogeneity
within the NK-cell population. It is for this reason
that NK cells are considered to have the ability to
respond to a variety of stimuli and to participate in
immune responses under different pathological
conditions.
NK-cell cytotoxicity is tightly regulated by a bal-
ance between activating and inhibitory signals. The
inhibitory NK-cell receptors recognize self-MHC
class I molecule, and this prevents NK-cell activation.
This explains self tolerance and prevention of host cell
killing. It was earlier discovered that NK cells are acti-
vated when they encounter cells which lack self-MHC
class I molecule. This is known as the ‘missing-self’
hypothesis.12 Moreover, NK cells can discriminate
between normal host cells and infected or abnormal
cells by recognition of MHC class I molecules. Virally
infected cells and tumor cells often downregulate
MHC class I expression to escape recognition by
cytotoxic T lymphocytes (CTL), but this results in
their vulnerability towards NK-cell attack. In this
condition, activation receptors are no longer sup-
pressed and they induce potent stimulatory signals,
therefore tipping the balance in favor of NK-cell acti-
vation.13,14 This condition is often referred to as
induced-self recognition.

Once the target is recognized by NK cells, their
cytotoxic ability is mainly mediated via two predomi-
nant pathways. A membrane-disrupting protein, per-
forin, and a family of structurally related serine
proteases, granzymes, are secreted by exocytosis,
which jointly induce apoptosis of the target cell. In
the second pathway, a caspase-dependent apoptosis
takes place involving the association of death receptors
(e.g. Fas/CD95) on target cells with their equivalent
ligands such as FasL, and tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) on NK
cells, resulting in caspase-dependent apoptosis. Anti-
body dependent cellular cytotoxicity (ADCC) can also
be a mechanism of killing of tumor cells by NK cells
as they express a low-affinity Fc receptor for IgG,
FccRIII (CD16).
NK CELLS DURING VARIOUS PHASES OF
HUMAN LIFE

Human NK cells are present in fetal liver as early as
gestational week 6, and in fetal spleen at gestational
week 15.15 Although fetal liver NK cells are known
to have the ability to kill target cells, they are hypore-
sponsive compared to adult NK cells. This indicates
that fetal liver NK cells are functionally immature.
It is likely that during the first trimester, NK-cell
development is under a dynamic phase. This is fol-
lowed by a steady phase in the second trimester.
The transition from fetal NK-cell development to a
more adult-like NK-cell state occurs in the third tri-
mester.16 Activity of NK cells in newborns is consid-
erably lower compared to adults, as has been shown in
Hematol Oncol Stem Cell Ther 8(2) Second Quarter 2015
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a study by Kaplan et al.17 This inactivation has been
accounted for by the lack of activation of pre NK cells
in vivo. This deficiency may be associated with the
susceptibility of newborns to certain viral infections
such as herpes viruses, against which NK cells are
considered to be the first line of defense.

During pregnancy, peripheral blood NK cells are
found to be suppressed both in terms of number
and activity.18,19 NK cells, besides being present in
the peripheral blood, can also be detected in the
uterus. This set of NK cells is known as uterine nat-
ural killer (uNK) cells. uNK cells do not express
CD16, unlike peripheral blood NK cells, but they
express CD94 and secrete cytokines such as MIP1a,
GM-CSF, CSF1 and IFN-c.20 It has been suggested
that uNK cells are either a distinct subpopulation of
peripheral blood NK cells or they could have arisen
by tissue-specific differentiation. At the implantation
site, uNK cells are the most prominent leukocytes
present. During the proliferative phase of the men-
strual cycle, uNK cells are few in number. Their level
rises significantly during the secretory phase and con-
tinues to remain high during early gestation. At
20 weeks’ gestation NK cells decrease and are absent
in term deciduas.21,22 They play an important role in
controlling trophoblast invasion and express receptors
that interact with ligands expressed on trophoblast.23

NK cells are an important regulator of spiral artery
remodeling and maintenance of decidual integrity.24

Fu et al. demonstrated that NK cells regulate patho-
genic T helper 17 (Th17) cells at the maternal-fetal
interface and thus promote immune tolerance and
maintenance of pregnancy.25 They are also responsi-
ble for switching the pro-inflammatory state to the
anti-inflammatory state in the endometrium by down-
regulating the expression of a soluble decoy receptor
(ST2L) receptor on their surface molecule, which
binds to IL-33. Imbalance in IL33/ST2 activation
can lead to recurrent pregnancy loss.26
ROLE IN VARIOUS DISEASE
CONDITIONS

The involvement of NK cells has been recognized in
various disease conditions. As mentioned previously,
one of the primary functions of NK cells is
immuno-surveillance of our body. Several in vitro
studies on mammalian cells, including human cells,
and also in vivo studies in mice and rats prove that
NK cells recognize tumor cells as targets. They con-
trol tumor growth and metastasis diffusion in vivo.
Tumor immuno-surveillance role of NK cells has also
been implicated in controlling the growth of B cell
Hematol Oncol Stem Cell Ther 8(2) Second Quarter 2015
lymphomas that spontaneously arise in mice lacking
both perforin and b2-microglobulin.27 An epidemiol-
ogic survey of 11-year follow-up shows a link between
low NK cell activity in peripheral blood and increased
cancer risk in adults.28 The role of NK cells as host
immunity has also been studied in various cases of
infections by flaviviruses, such as Japanese encephalitis
virus, yellow fever virus, dengue virus, tick-borne
encephalitis virus and West Nile virus (WNV).
Their role in viral hepatitis, influenza virus and
HIV-1 infection is also well documented in several
studies.29–34 Similarly, their role in protecting against
respiratory infection by bacteria, viruses such as respi-
ratory syncytial viruses (RSV), and influenza has been
elaborately described in murine studies.35–37 NK cells
are assumed to be a major determinant of the develop-
ment of viral-associated asthma.

In most cases, the role of NK cells is found to be
either disease controlling or disease enhancing. For
example, in asthma, NK cells contribute towards
the progress of T cell mediated allergic airway
response during allergen specific sensitization
phase.38,39 Existing evidence also suggests that NK
cells are involved in resolving acute allergic airway
inflammation.40 Peripheral blood of asthmatic
patients shows enhanced NK-cell activity which
decreases upon antigen challenge.41 This suggests that
NK cells migrate from circulation towards lungs and
lymphoid organs.41,42 Similarly, in human autoim-
mune diseases, changes have been observed in circulat-
ing blood NK cells in terms of quantitative as well as
qualitative parameters. In many instances of autoim-
mune disease, a reduction in number of NK cells
along with decreased cytotoxic function has been
observed.43,44 In vivo studies using experimental auto-
immune encephalomyelitis (EAE), which is an animal
model of multiple sclerosis (MS), show increased
severity and mortality when NK cells are depleted
prior to disease induction. EAE animals have cellular
infiltration, CNS inflammation, and demylination.45–47

It is therefore hypothesized that NK cells are involved
in the control of autoimmune disease conditions.
Clinical trials on MS patients suggest low frequency
and activity of NK cells in the peripheral blood but
this cannot be ascertained as these studies were
conducted using variable methods and low patient
sample size.48–50 On the other hand, the cytotoxicity
of NK cells can augment an autoimmune disease.
Auto reactive NK cells can lead to the destruction
of cells in a target organ. In Type 1 diabetes, NK cells
have been found in pancreatic islets only during
infection or inflammation, and not under healthy,
non-diseased conditions.51 Preclinical data also
49
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suggest that NK cells are involved in the development
of Type 1 diabetes.52,53 Some studies on Type 1 dia-
betes patients show that NK cells are either decreased
or their function is impaired.54–56 In rheumatoid
arthritis (RA), tissue NK cells have disease promoting
functions. In 2005, Laszlo reported that patients with
RA have NK-cell accumulation in their synovial
fluid.57 The NK-cell subset, CD56bright, found here,
secretes more IFNc compared with blood NK cells
from the same patients.58 However, in systemic lupus
erythematosus (SLE), patients show a variable and
moderate reduction of NK-cell numbers along with
reduced CD4+CD25+ Treg cells.59,60 The function
of NK cells is downregulated in these patients and
there is a shift from the CD56dim population to the
CD56bright subset.61,62 It is also indicated that NK
cells in these patients have a reduced cytotoxic
effect.63 This deficiency of NK cells corresponds with
clinical conditions such as nephritis and thrombope-
nia during SLE. The abnormality in NK-cell number
and function could therefore play a role in the
inflammatory condition. In other words, NK cells
play a protective or disease controlling role to prevent
SLE.

It is evident that NK cells act on cells during dis-
ease condition either through their receptors or due to
the interactions of cytokines. They are known to
attack tumor cells when the expression of MHC class
I molecules is absent or downregulated. Upregulation
of NKG2D ligands on tumor cells can also make
them susceptible to NK-cell attack. Most cancer cells
engage the NK cell’s activating receptors, which trig-
gers its natural kill response. Members of the NK-cell
receptor family also contribute towards the defense
mechanism against viruses. Infection of mouse or
human cells with flaviviruses is known to increase
cell-surface expression of MHC class I on infected
cells, as evidenced in WNV infection, and therefore
they evade NK-cell mediated killing.64,65 In HIV1
infection, although no specific NK-cell receptors have
been identified that recognize HIV1 infected cells,
there is a remarkable increase in inhibitory receptors
and a decrease in number of activating receptors like
NKp30, NKp46 on NK cells.66,67 In vivo condition
has shown that NK cell ligand HLA-B Bw4-801
and its receptor KIR 3DS1 form an association
resulting in the inhibition of HIV-1 replication and
the killing of target cells by NK cells.32,34 This leads
to a decrease in activity of NK cells during HIV1
infection. The abnormality of NK-cell functioning
during HIV-1 infection can be credited to viral pro-
teins. HIV-1 gp41, gp120, Nef and Tat have been
proven to downregulate NK-cell activity by various
mechanisms.68–71 Evidence of NK-cell receptor
involvement is also known in diabetes. Gur et al.
recently demonstrated that NKp46, the activating
NK-cell receptor, binds to an unknown ligand on
pancreatic b cells effectively killing them, due to the
degranulation of NK cells in mice as well as
humans.51,54 The study concluded that NKp46 is
essential for the development of Type 1 diabetes. In
humans, this ligand is expressed constitutively in both
the young and in adults. But the fact that not all
humans become diabetic in spite of possessing the
ligand that makes b cells subject to NK-cell attack
is because NK cells are not commonly found in the
healthy pancreas. In another study, patients with
long-standing Type 1 diabetes showed a remarkable
low expression of NKp30 and NKp46 activating
receptors in their blood in comparison to those of
the control group. Also, the expression of NKG2D
was found to be reduced relative to the control and
irrespective of disease duration. Long-standing
patients also displayed reduced perforin mRNA
expression.72 Consistent with these results, a
decreased lysis activity by the NK cells was observed
by Lorini et al. in patients with long-standing diabe-
tes.73 The reduction in NK-cell activity in these dia-
betic patients is thought to be a consequence rather
than a cause.

An important role is played by cytokines and che-
mokines which act in conjunction with NK cells to
tackle various diseased conditions. IL-12 and IL-18,
NK activating cytokines active during late NK-cell
differentiation, have been demonstrated to synergisti-
cally enhance cytotoxicity against tumor targets and
IFN-c production by NK cells. IFN-c induces type
I immune response and directly acts on cancer cells.
IL-12, IL-18 and IFN-c are also known to have a pro-
atherogenic effect.74 In response to certain viral infec-
tions, IFN-a/b is produced, enhancing the NK-cell
mediated cytotoxicity and leading to the killing of
the viral infected cells. Moreover, many key pathways
related to antiviral functions are activated by IFN-c.
IL-21, another cytokine binding the common c-chain
(shared with IL-2, IL-4, IL-7, IL-9, and IL-15), has
been demonstrated to favor the onset of the most
cytotoxic CD56dimCD16+ NK cell subset and to
enhance its cytotoxicity. Tumor Necrosis Factor
(TNF) is another factor produced by NK cells and
which is known to mediate antiviral and immunoreg-
ulatory effects. Chemokines produced by NK cells
such as MIP-1a are capable of promoting inflamma-
tory processes. In some cases, IL-10, also produced
by NK cells, is known to be anti-inflammatory which
inhibits Dendritic Cells (DCs). NK cells can lessen
Hematol Oncol Stem Cell Ther 8(2) Second Quarter 2015
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the effect of antigen presentation by Antigen Present-
ing Cells (APCs) and reduce T cell proliferation.75

These cells are normally observed to have accumu-
lated at the site of immunization, and they generate
cytokines which are involved in the pathogenesis of
allergic inflammation. NK cells are indicated to gener-
ate IFN-c, TNF-a, GM-CSF and MIP-1 a upon
stimulation with IgE, and also demonstrate cytotoxic-
ity against IgE coated target cells in a Fc cRIII depen-
dent manner.76

NK cells interact with various other immune cells
in our body both in normal conditions as well as dur-
ing pathological conditions. In normal and asthmatic
lungs, lung resident dendritic cells and macrophages
are known to form synapses with NK cells leading
to generation of NK derived cytokines and effector
molecules involved in local immunity, and at the same
time can regulate allergic disease severity.77 The
dynamic nature of cytokine and cellular profile of the
microenvironment can influence the development of
specific NK subtypes which may lead to conversion
from a pro-inflammatory to a pro-resolution NK sub-
type.78 If there is any disturbance or defect in this pro-
cess, then it may lead to more severe inflammation and
eventually to airway damage. DCs are known to cross-
talk with NK cells through production of cytokines
Table 1. NK cells in disease conditions.

Disease Role of NK cells St

Cancer Immuno-surveillance

Viral infection Immuno-protection Lo

Asthma Contribution to IgE mediated immune-response,

resolution of airway inflammations

Type 1 diabetes Disease enhancing M

ex

Rheumatoid

arthritis

Disease controlling or enhancing? Lo

Systemic lupus

erythematosus

Disease controlling

Abbreviations: hESC – human embryonic stem cells.
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such as IL-12 and IL-18 as well as through cell–cell
interactions to promote NK-cell activity against
tumors. Crosstalk between NK cells and DCs may
be disrupted during HIV1 infection, although this
mechanism is not clear. Moreover, it is possible for
NK-cell mediated lysis of virally infected cells to be a
source of apoptotic bodies for uptake of DCs, which
may promote DC maturation and viral antigen presen-
tation to T cells.79 Another important immune system
component, the macrophages, are known to increase
the anti-tumor and anti-infection activity of NK cells
through their crosstalk.80–82 Treg cells, part of the
adaptive immunity, are also known to interact with
NK cells and mostly control their activity during var-
ious disease conditions. Treg cells have been seen to
suppress NK cells via IL-21 mediation in autoimmune
disease conditions.83 Similarly, in patients with gastro-
intestinal, colon and prostrate cancers, a high level of
Treg cells has been associated with a reduced number
of NK cells along with reduced functionality.84–86 An
in vitro study has shown that Treg cells from hepato-
cellular carcinoma patients inhibit NK-cell killing abil-
ity. However, during pregnancy, NK cells, along with
Treg cells, contribute towards the creation of tolerant
conditions for the fetus, and any change in that leads to
complications (Table 1).
atus of NK cell during disease condition Possible therapeutic approach References

Low activity Adoptive NK cell transfer and enhancement

of activatory receptors

27,28,87–

96

w number and activity, shift from CD56dim

to CD56bright

Adoptive NK cell transfer, genetically

engineered HIV1 specific NK cells

receptors, CCR5 deficient hESC-NK cell

transfer

29–37

Migration from circulation to lung and

lymphoid organs

Adoptive NK cell transfer, in vitro or in vivo

expansion of specific NK cell subsets

38–42

igration from blood to pancreas? Low

pression of NKp30, NKp46 and NKG2D,

low perforin in blood NK cells

Targeting NKp46 receptor to reduce auto-

destruction of b-cells

51–

54,72,73

w number and activity in blood, increase

in synovial fluid

Blocking inhibitoryNKG2A (to enhance) or

RANKL and M-CSF (to control)

44,57,58,97

Low number and activity, CD56bright

increase, low perforin

Adoptive NK cell transfer 59–63
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THERAPEUTIC APPLICATIONS OF NK
CELLS IN VARIOUS DISEASE
CONDITIONS

NK cells play a crucial role in attacking tumor cells in
our bodies, and are considered a promising tool for
cancer therapy. Treatment range over the past two
decades has included IL-2 administration to activate
the endogenous NK cells or to adoptively transfer
IL-2 activated NK cells.87–91 Autologous NK-cell
therapy has been experimented on for the treatment
of renal cell carcinoma, malignant glioma, and meta-
static breast cancer. However, it was soon recognized
that autologous adoptive NK-cell therapy may have
certain drawbacks and thus may not be efficacious.
The drawback is mostly attributed to the inhibition
of NK cells by self-MHC I molecules expressed on
the tumor cells. This has led to the use of allogeneic
NK cell therapy in trials. In a pioneering study, Rug-
geri et al. demonstrated that alloreactive NK cells
given to patients with acute myelogenous leukemia
(AML) could eliminate relapse, graft rejection, and
protect them against graft-vs-host disease (GvHD).92

Later, adoptive cellular transfer of allogeneic NK cells
from haploidentical donors was also attempted for
treatment of renal cell carcinoma, metastatic mela-
noma, refractory Hodgkin’s disease, and refractory
AML.93 They were also found to be useful against
several solid tumors such as neuroblastoma, renal,
colon, gastric, and ovarian cancers.94,95 The trials con-
cluded that NK-cell transfer was safe and efficacious.
Similar trials were also conducted recently in patients
with recurrent metastatic breast and ovarian cancer.96

The allogeneic NK cells have the advantage of being
derived from healthy donors and have more cytotoxic
activity. Moreover, NK cells do not induce GvHD,
unlike T cells.

As discussed in the earlier section, the role of NK
cells has been established not only in cancer but also
in various other disease conditions. Adoptive NK cell
therapy can thus be explored for diseases such as
asthma, multiple sclerosis, diabetes, arthritis, etc.
The effectiveness of NK cells in controlling HIV-1
infection has already been demonstrated in in vitro
and in vivo experiments.31,33 NK cell therapy can be
applied to patients who are refractory to standard
highly active antiretroviral therapy (HAART).
Besides the option of using NK cells for adoptive
transfers, understanding the role of NK cells and their
receptors can open up other strategies to treat dis-
eases. For example, during the developmental stages
of Type 1 diabetes, the activation of NK cells can
be prevented by the administration of specific anti-
bodies for blocking the NKp46 activation receptor.
Similarly, in rheumatoid arthritis where the role of
NK cells can possibly be protective or disease-enhanc-
ing, therapy can be considered accordingly. Inhibitory
receptor NKG2A can be blocked, which will stimu-
late NK cells and thus control the disease. Where
NK cells enhance the disease condition, the blocking
of RANKL (receptor activator of NFKB ligand) and
M-CSF (macrophage colony-stimulating factor), fac-
tors which mediate osteoclastogenesis and bone
destruction, can help.97

For the purpose of therapeutic applications, allo-
geneic NK cells can be sourced from umbilical cord
blood (UCB), adult donor lymphapheresis products,
or even from NK-cell lines such as NK-92. Recently,
studies have shown successful in vitro derivation of
functional NK cells from human embryonic stem
cell (hESC) and induced pluripotent stem cell
(iPSC).98–100 hESC and iPSC-derived NK cells
have demonstrated potent anti-tumorigenic and anti
HIV activity, and are phenotypically similar to those
of peripheral blood origin. Moreover, they are con-
sidered superior to UCB-derived NK cells because
they have higher levels of KIR expression, thus mak-
ing them more potent. Pluripotent cell-derived NK
cells can therefore be an unlimited source for the
adoptive transfer of NK cells to treat a range of dis-
eases. However, safety of hESC and iPSC-derived
NK cells in terms of potential tumorigenicity needs
to be determined before they can be utilized in the
clinical set up.

The application of NK cells as immunotherapeu-
tic agent requires several technical developments.
NK cells need to be isolated and expanded in suffi-
cient numbers for them to act as effector cells.
Moreover, the activity of NK cells needs to be
enhanced for better efficacy. Expansion of NK cells
has been attempted using cytokines such as IL-2
and IL-15.101,102 These two cytokines can also help
increase the survivability of the NK cells.103 IL-2 is
also thought to potentiate the cytotoxic ability of
NK cells. Co-culturing NK cells with accessory cells
such as irradiated Epstein Barr Virus (EBV) trans-
formed lymphoblastoid cells, HFWT (a Wilm’s
tumor derived cell line), and K562 has been
reported to enhance NK cell proliferation.104–106

Activation of NK cells can be achieved by various
genetic engineering techniques to augment activating
signals and also to downregulate inhibitory sig-
nals.107–111 Similarly, the specificity of NK cells
can be increased through genetic modification
approaches such as the use of chimeric antigen
receptors (CARs)112–114 (Table 1).
Hematol Oncol Stem Cell Ther 8(2) Second Quarter 2015
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CONCLUSION

Research to date has helped us gain an understanding
of NK cell biology in terms of function and role of
their receptor interactions. Their task in attacking
tumor cells is now well established. However, a clearer
picture to determine their specific roles in diseases
such as asthma, diabetes, and rheumatoid arthritis is
still desired. Further investigation is required to
understand the interactions of NK cells with other
cells of the immune system such as T cells, dendritic
cells, and macrophages. But there is no doubt that
NK cells will emerge as major players in the area of
Hematol Oncol Stem Cell Ther 8(2) Second Quarter 2015
cancer treatments, viral infections, including HIV/
AIDS, autoimmune diseases, and asthma in the com-
ing decade. The immediate future may see the use of
NK cell therapy in combination with chemotherapy,
radiotherapy, and surgery for cancer. More focus
should be placed on establishing techniques for the
isolation and expansion of these cells in their required
numbers.
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