

Polymerase Chain Reaction (PCR): An Alternative Rapid Method for Detection of Some Microbial Contamination of Meat Products

Reda Z. Tarabees^{*, 1}; Zakaria H. Hassanin²; Abd El Rahman M. El Bagoury²

¹Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary medicine, El Sadat City University, El Sadat City, Minufyia, Egypt.

²Department of Meat Hygiene and control, Faculty of Veterinary medicine, El Sadat City University, Minufyia, Egypt.

		ABSTRACT:				
	Key Words:	The use of advanced molecular techniques such as PCR has been introduced as a new rapid and reliable				
	PCR, Meat	method for detection of microbial contamination of food stuff. In this study, a total of 160 meat products				
	products, E. coli, samples 40 of each luncheon, beef burger, minced meat, and fresh sausage) were examine					
	Staph. aureus	presence of E. coli and pathogenic Staph. aureus using traditional methods of isolation and identification				
		and RAPD-PCR. The data obtained from this study showed that E. coli was isolated from 9 (22.5%),				
		13 (32.5%), 19 (47.5%), and 24 (60%) by traditional method comparing with 8 (20%), 13 (32.5%), 17				
		(42.5%), 23 (57.5%) using RAPD-PCR method out of 40 samples of luncheon, beef burger, minced				
		meat, and fresh sausage samples respectively. While, Staph. aureus was isolated from 17				
		(42.5%), 11 (27.5%), 28 (70%), and 18 (45%) using traditional methods in comparison with 13				
		(32.5%), 8 (20%) 23 (57.5%), and 14 (35%) using RAPD-PCR method out of 40 samples of				
luncheon, beef burger, minced meat, and fresh sausage samples correspondingly, with a sensitiv						
		ranged from 87 to 96% in case of E. coli and 72 to 82% in case of Staph. aureus. Collectively, the				
		obtained results in the current study clarified that that, PCR is considered as a rapid, reliable				
	and sensitive tool for detection of microbial contamination of food stuff.					
	*Author of Correspondence : Reda Tarabees: reda tarabees@vet usc.edu.eg					

1. INTRODUCTION

During the last few decades, a major development in food chain in the form of expansion of supermarkets that provided consumers with a wide range of retailing meat products, so, consumer's interest in meat as a food has been increased and is reflected by the increasing demand for high quality meat products (Scanga et al., 2000; Stephan et al., 2003). Escherichia coli (E. coli) and Staphylococcus aureus (Staph. aureus) are the most important foodborne pathogen causing food poisoning and many other disease conditions amongst food consumers. E. coli is a major component of the normal intestinal flora of humans and other mammals. Some E. coli strains represent primary pathogens with an enhanced potential to cause disease after acquiring specific virulence attributes. These virulence attributes are normally encoded on genetic elements that can be exchanged between different strains, the presence of theses virulence genes can magnitude the severity of infection caused by these strains (Li et al., 2005). Staph. aureus is one of the most important amongst Staphylococci species. The species is found primarily on human skin, mucous membranes and can also be found in other areas of human contact

aureus is considered the third worldwide cause amongst the food-borne illnesses reported cases (Tamarapu et al., 2001). In Egypt, meat products such as sausage, beef burger and luncheon are gaining popularity as they represent quick easily prepared meat meals with low price which is within the reach of large numbers of families with limited income. Contamination of such products with some foodborne microorganisms including E. coli and Staph. aureus during processing makes the need for a rapid and accurate method for detection is urgent. In the last few years, the development of molecular typing methods such as Polymerase chain reactions (PCR) techniques in particular Multiplex PCR and RAPD-PCR has offered the possibility of accelerating a great deal of bacterial identification with limited troubles related to sampling preparations, use of specific media, excessive use of chemicals in the traditional methods (Aymerich et al., 2003). Moreover, phenotypic identification of bacterial contamination of meat products is considered time consuming as and often problematic in many aspects.

including soil, water, and food products. Staph.

Multiplex-PCR consists of multiple primer sets within a single PCR mixture to produce amplicons of various sizes that are specific to different DNA sequences, while RAPD PCR stands for random amplification of polymorphic DNA PCR. It is a type of PCR reaction, but the segments of DNA that are amplified are random. The scientist performing RAPD creates several arbitrary, short primers (8-12 nucleotides) then proceeds with the PCR using a large template of genomic DNA, hoping that fragments will amplify. By resolving the resulting patterns, a semi-unique profile can be gleaned from a RAPD reaction (Bartlett and Stirling, 2003). Herein, this study was aimed to validate the use of RAPD-PCR as an alternative rapid, reliable and accurate tool in the field of identification of microbial contamination of food stuff in comparison with traditional methods of isolation and specific identification (culture media. on biochemical and serological tests, ... etc).

2. MATERIAL AND METHODS

I-Samples and samples preparation

The samples preparation was carried out according to (Petternel., et al 2014). Briefly, a total of 160 random meat product samples (40 each of luncheon, beef burger, minced beef, and fresh sausage) were collected from different super markets at Minufyia Governorate. The collected samples were then transferred immediately under full aseptic conditions for bacteriological isolation and identification of E.coli and Staph. aureus . 25 grams of the examined meat product samples were transferred to 225 ml of 0.1% sterile buffered peptone water, then stomached for 2 min to provide a homogenate. One ml from the original dilution was then transferred to another sterile tube containing 9 ml of sterile buffered peptone water and mixed will to make the next dilution from which further decimal dilutions were prepared (Samaha et al., 2012).

II- Isolation and identification of *E. coli*

Isolation and identification of *E.coli* was carried on specfic media, then the isolates were confirmed to be *E.coli* by various biochemical assays, as per Bergey's manual of determinative bacteriology (Holt *et al.*,, 1994). The serological identification of isolates was carried out according to (Varnam and Evans, 1991). Isolated strains of *E. coli* were identified serologically using diagnostic Sera (Denka Seiken Co., LTD, Tokyo, Japan).

III- Isolation and identification of *Staph.aureus*

Isoaltion and identification of *Staphylococcus* was carried out according to per Bergey's manual of determinative bacteriology (Holt *et al.*, 1994). Screening for pathogenic *Staph. aureus*was done by performing various biochemical assays, including Coagulase test, DNase test (Baird, 1996), and Thermostable nuclease test (TNase) (Lachica *et al.*, 1971).

IV-Random Amplified Polymorphic DNA (RAPD)-Polymerase chain reaction (PCR) for *E. coli*

RAPD-PCR for E. coli was carried out according to (Maurer et al., 1998). Briefly, 25 gm of sample were added to 225 of brain heart infusion broth and stomached (Seward stomacher 80 Biomaster, England) for 2 min then incubated over night. One ml of an overnight incubated broth was centrifuged at 13000 rpm for 2 min and the sediment was then resuspended in equal volume of Tris-EDTA buffer containing 100 µl of lysozyme solution (10 mg/L), 100 µl of protienase K enzyme (0.3 mg/L) and 1% dodecyl sulphate. The DNA lysate was extracted with chloroform/isoamyl alcohol (24:1, ratio by with volume). then extracted phenol/ chloroform/isoamyl alcohol (25:24:1, ratio by volume). The aqueous phase was mixed with isopropanol alcohol and incubated at -20°C for 30 min. The precipitated DNA was spooled out, rinsed in 70 % ethanol and dissolved in 0.5 ml of Tris EDTA buffer. The RAPD-PCR reaction mix (50 μ L) for each sample was made with (10 μ L) extracted DNA, 2.5 µL primers mix (0.5 µL from every primer table (1)), 1 µL deoxynucleoside triphosphate (dNTP-mix), 5 µL 10x buffer, 1µL Taq-DNA polymerase enzyme (5000 U/ml), and 30.5 µL ultra pure deionized water.

The reaction mixture was then overlaid with mineral oil and was incubated in the thermal cycler as follows, the first initial cycle 94°C for one minute (denaturation), 35°C for 2 min (annealing) and 72 °C for 2 min (extension). The consequent 35cycles of 94°C for 30 seconds (denaturation), 35 °C for one minute (annealing) and 72 °C for 2 min (extension). The final extension step at 72 °C for 5 min then kept at 4°C (hold temperature). The amplified products were analyzed on agarose gel (consisted of 2% agarose and 5 µL of ethidium bromide in 1x Tris – Acetate EDTA (TAE) buffer. The samples were then electrophoreses at 100 volts for one hour, shown under ultra violet transiluminator and photographed.

V-Random Amplified Polymorphic DNA (RAPD)-Polymerase chain reaction (PCR) for *Staph. aureus*

The technique was carried out according to (Reinoso et al., 2004). Briefly, 25 gm of sample was added to 225 ml of brain heart infusion broth and stomached (Seward stomacher 80 Biomaster, England) for 2 min then incubated over night. Genomic DNA extraction was carried out using GeneJET Genomic DNA Purification Kit (Fermentas) following the instruction procedures. The collected DNA was then kept at -20 C untile used. 20 ng of chromosomal DNA was used per reaction . amplifications were performed in 25 µl buffer solution containing 3 of μM of oligonucleotides, 200µM of each deoxynucleoside triphosphate, 3.5 mM MgCL2 and 2.5U of DNA Taq polymerase. The oligonuleotides OLP6 (5)-GAGGGAAGAG-3\), OLP11 (5\-ACGATGAGCC-3\), OLP13 (5\-ACCGCCTGCT-3\). The mixtures were then overlaid with mineral oil and amplification was performed in PCR thermal cycler. The amplification consisted of a cycle of predenaturation at 94 C for 5 min. followed by 40 cycles of 1 min. at 93 C, 1.5 min. at 37C and 1 min at 72 C and final extension at 72 C for 8 mi. The amplified products was analyzed on agarose gel (consisted of 2% agarose and 5 µL of ethidium bromide in 1 x Tris -Acetate EDTA (TAE) buffer. The samples were then electrophoreses at 100 volts for one hour, the products were visulaised under ultra violet transiluminator and photographed.

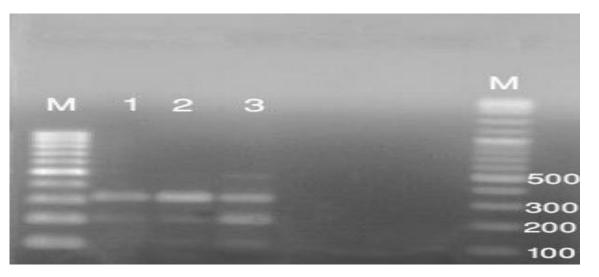
3. Results and disscusion

3.1. Isolation and identification of E.coli with the traditional and RAPD-PCR method

E.coli is conisdered as one of the human and animal intestinal microflora, and most are found throughout the envrionment with little sanitary significance (Geenberg and Hunt, 1985). Enteropathogenic E. coli been incrimintaed as apotential food poisoning agenv usually associated with infants diarrhoea and gastroenteritis in adults (Mayron, 1987). The data presented in table (2) showed that, E .coli was recovered from 9 (22.5%), 13 (32.5%), 19 (47.5%), and 24 (60%) using traditional method (isolation and further identification) comparing with 8 (20%), 13 (32.5%), 17 (89.47), and 23 (95.83%) using RAPD-PCR. While that data presented in Fig (1) showed the specfifc band size of E. Coli starins using RAPD-PCR method. The sensitivity of RAPD-PCR in cmparion with tradtional method was ranged from 89 to 96%. The results obtained by the traditional method was agreed with obtained by (Nashed, 1993) and (Abou-Hussien, 2004). Conversely, a lower results were obtained by (Ouf, 2001) and (Eleiwa, 2003). The presence of *E.coli* in food is considered as an indicator of faults during preparation, handling, storage or service. Moreover, it is considered as index of fecal contamination. The contamination of meat products with *E.coli* especially the virulent strains will be associated with bad consequences, it may induce severe diarrhea in infants and young children, and food poisoning and gastroenteritis among the adults. The introduction of new method of bacterial identification was a time and chemicals saver. The use of RAPD-PCR offers an efficient microbiological tool for presumptive detection of E. coli in meat (Li et al., 2005). Moreover, PCR has been introduced as an effcient and rapid tool for identification of enterotoxigenic and shigatoxin producing E.coli in fecal samples collected from human and animals (Zidan et al., 2014; Zidan, 2010).

NO.	Primer sequence	Size	Melting point	Guanine
				cytosine%
1-	5' AAGAGCCCGT 3'	10-mer	32C	60
2-	5 ' AACGCGCAAC 3'	10-mer	32 C	60
3-	5' GCGATCCCCA 3'	10-mer	34 C	70
4-	5' GTGGATGCGA 3'	10-mer	32C	60
5-	5'AAACGGTTGGGTGAG3	15-mer	47.8C	53.3

Table (1) Oligonucleotide primers sequences for RAPD-PCR amplification of *E.coli*.


Regarding the incidence of E.coli serovares isolated from meat products, the data presented in table (3) showed that many serovares are isolated with varied ratios. Pathogenic *E. coli* have been broadly classified into two major categories: the diarrheagenic *E. coli* and the extraintestinal pathogenic *E. coli*. Among the diarrheagenic *E. coli*, there are currently six categories:

enteropathogenic Е. coli (EPEC), enterohemorrhagic E. coli (EHEC)/Shiga toxinproducing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC). enteroaggregative E. coli (EAEC), and diffusively adherent E. coli (DAEC) . The E. coli strains causing extraintestinal infections have been collectively called extraintestinal pathogenic E. coli (ExPEC), which includes two major pathotypes, uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) (Xiaodong, 2010). The data presented in table (3) showed that, E.coli serotypes were isolated from luncheon, beef

burger, minced meat, and fresh sausage in a various ratios. The majority of isolated serotypes were EPEC, EHEC, ETEC, and EIEC. These data were nearly similar to that obtaine by (Abd-El-Aziz *et al.*, 1996; Aiedia, 1995) while lower ratios were obtained by Fantelli and Stephan and Saleh (Fantelli and Stephan, 2001; Saleh, 2001). EPEC (O126, O127, O114, and O142) strains are the major cause of infantile diarrhea (Varnam and Evans, 1991), while ETEC strains (O78, O25 and O63) are considered the common cause of traveller's diarrhea and / or children diarrhea (Daved *et al.*, 1990).

Table (2)Incidence of *E. coli* in the examined meat product using tarditional method and RAPD-PCR and sentivity of RAPD-PCR in comparison with traditional method.

Product	Traditional method		RAPD-PCR		
	No	%	No	%	
Luncheon	9	22.5	8	20	88.89
Beef burger	13	32.5	13	32.5	100
Minced meat	19	47.5	17	42.5	89.47
Fresh sausage	24	60	23	57.5	95.83

Figur (1); PCR Gel electerophersis pattern of *E.coli* starins using RAPD-PCR

Table (3). Incidence of *E. coli* serovars in various meat products (luncheon, beef burger, minced meat, and fresh sausage)

Serotypes	Meat products						
	Luncheon	Beef burger	Minced meat	Fresh	Classification		
O25		20%	meat	sausage 20%	ETEC		
O26			20%		EHEC		
O63	20%				ETEC		
078			20%		ETEC		
O86			20%		EAEC		
O111	20%			20%	EHEC		
O112		20%			EIEC		
O114		20%			EPEC		
O119		20%			EHEC		
O124	20%				EIEC		
O126	20%			20%	EPEC		
O127		20%			EPEC		
O128			20%	20%	EPEC		
O136				20%	EIEC		
O142	20%		20%		EPEC		

Isolation and identification of *Staph. aureus* with the traditional and RAPD-PCR method

Staph. aureus is one of the most common causes of foodborne illness worldwide due to the widespread occurrence of Staph. aureusand to the ability of manv strains to produce one or more Staphylococcus enterotoxins. The data presented in table (4) and Fig (2) showed that, Staph. aureus was recovered from 17 (42.5%), 11 (27.5%), 28 (70%), and 18 (45%) using traditional method of isolation and identification in comparsion with 13 (32.5%), 8 (20%), 23 (57.5%), and 14 (35%) using RAPD-PCR out 40 samples of luncheon, beef burger, minced meat and fesh sausage respectivelly, with a sensitivity rate ranged from 72 to 82%. Results of *Staph. aureus*counts in tested products werer varied between each other, undoubtedly, many factors are responsible for these variations, and mostly, the neglected hygienic practices were the foremost factors. The data presented in this study was lower comparing with that obtained by (Al-Kour, 2001; Ouf, 2001). On the contrary, a higher incidence was obtained by (Abou-Hussien, 2004; Hassanin, 2007). The data presented in Fig (2) showed the specific band size of examined meat products in comparsion with that of reference strain. *Staph. aureus* considered as an adaptable pathogen of humans and animals. It is present in the nares of about 20-30% of healthy

peoples: conversely about 60% of the population harbours the microorganism irregularly (Kluytsman et al., 1997). The species is capable of causing a wide variety of diseases ranging in severity from slight skin infection to more severe diseases such as pneumonia and septicaemia (Franklin and Lowy, 1998). Although not all Staph. aureus food intoxication cases are recorded, yet Staph. aureus is still considered the third worldwide cause amongst the foodborne illnesses reported cases (Tamarapu et al., 2001; Tirado and Schimdt, 2001; Zhang et al., 1998). Staphylococcal food poisoning represents a considerable social burden in terms of hospital expenses, loss of patient's working days and productivity, together with the problems and the cost of disposing the contaminated food. Althought, culture methods are still conisered as standard methods for trdational confirmation of Staph. Aureus conatmination of food stuff. However, PCR has been introduced as alternative method that may decrease the time to 18 hrs or to less than 2 hrs (Anderson and Weese, 2007; Kilic *et al.*, 2010; Thomas *et al.*, 2007)

CONCLUSION

The data presented in this study has focused on the use of advanced molecular techniques in particular RAPD-PCR in the field of identification of microbial contamination of meat products. RAPD-PCR is conisered as a rapid and senitive tool with limited mistakes related to phenotypic identification. On the other hand, it was not

possible to confirm these results by performing the cultural method as detection was carried out from DNA extracts only, and the cells had already been inactivated. Therefore, for accurate identification of microbial contamination in meat product we strongly recommend using PCR pararelle with cultural identification.

Table (4): Incidence of *Staph. aureus* in the examined meat product using tarditional method and RAPD-PCR and sentivity of RAPD-PCR in comparison with traditional method.

Product	Traditi	Traditional method		D-PCR	% of sensitivity
	No	%	No	%	
Luncheon	17	42.5	13	32.5	76.47
Beef burger	11	27.5	8	20	72.72
Minced meat	28	70	23	57.5	82.14
Fresh sausage	18	45	14	35	77.78

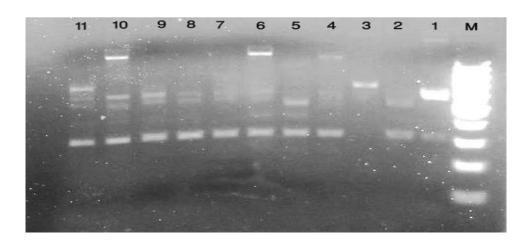


Fig (2); Agarose gel electrophoresis shows RAPD PCR products of *Staph. aureus* strains. Lane (1-10) several bands at different levels of the gel, lane (11) reference *Staph. aureus* strain.

5- REFERENCES

- Abd-El-Aziz, A.S., El-Neklawy, E.I.S., Hussien, A., Niazi, Z., 1996. Food poisoning microorganisms in some locally meat products. Vet. Med. Journal 44: 691-698.
- Abou-Hussien, R.A.A., 2004. Microbial evaluation of some meat products. M. V. Sc. Thesis (Meat hygiene), Fac. Vet. Med. Moshtohor, Zagazig University, Banha branch.
- Aiedia, H.A., 1995. Quality investigation into room kept traditional meat products in Egypt. PhD Thesis, (meat hygiene), Fac. Vet. Med., Cairo University.
- Al-Kour, M.S., 2001. Microbiological states of meat and some meat products in northern Jordan. M.V.Sc. Thesis, Meat Hygiene. Fac. Vet. Med., Jordan University of Science and Technology.
- Anderson, M.E., Weese, J.S., 2007. Evaluation of a realtime polymerase chain reaction assay for rapid identification of methicillin-resistant Staphylococcus aureus directly from nasal swabs in horses. J. Vet Microbiol 122:185-189.
- Aymerich, T., Martin, B., Garriga, M., Hugas, M., 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic Staphylococci from artisanal low-acid sausages. Appl Environ Microbiol 69: 4583-4594.
- Baird, D., 1996. Staphylococcus: cluster forming Grampositive cocci. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and McCartney practical medical microbiology. 14th ed. New York: Churchhill Livingstone; 1996. p. p247.
- Bartlett, J.M.S., Stirling, D., 2003. PCR Prptocols. Methods in Molecular Biology[™]. Volume (226) 2003. ISBN: 978-0-89603-642-0 (Print) 978-1-59259-384-2 (Online).
- Daved, G.W., Richard, C.B., Slank, J.F., 1990. Enterotoxigenic *E.coli* isolated from foods in San Paulo, Brazil. J. Food Prot 50: 832-834.
- Eleiwa, N.Z.H., 2003. Effect of chemical preservatives on food poisoning bacteria in some locally manufactured meat products. PhD Thesis, (Meat Hygiene), Fac. Vet. Med. Zagazig University.
- Fantelli, K., Stephan, R., 2001. Prevalence and characteristics of Shigatoxin-producing Escherichia coli and Listeria monocytogenes strains isolated from minced meat in Switzerland International J. Food Microbiol 70: 63-69.
- Franklin, D., Lowy, F.D., 1998. Staphylococcus aureus infection. J. New England of Medicine, 339: 520-532.
- Geenberg, A.E., Hunt, D.A., 1985. Laboratory procedures for examination of seawater and shellFish, 5th ed. The American Public Heath Association, Washington, DC.
- Hassanin, Z.H., 2007. Studies on food poisoning microorganisms in some meat products. M. V. Sc.

Thesis (Meat hygiene) Fac. Vet. Med. Menofia University, Sadat branch.

- Holt, J.G., Kreig, N.R., Sneath, P.H., Staley, J.T., Williams, S.T., 1994. Bergey's manual of determinative bacteriology. 9th ed. BaLtimore, MD: WiLLiams and WiLkins; 1994. p. 151–7.
- Kilic, A., Muldrew, K.L., Tang, Y.W., Basustaoglu, A.C., 2010. Triplex real-time polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci and determination of methicillin resistance directly from positive blood culture bottles. Diagn Microbiol Infect Dis 66, 349-355.
- Kluytsman, J., van Belkum, A., Verbrugh, H., 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. J. Clin. Microbiol. Rev. 13: 505-520.
- Lachica, R.V.F., Genigeorgis, C., Hoeprich, P.D., 1971. Meta chramatic agar-diffusion methods for detecting staphylococcal nuclease activity. J. Appl. Microbiol., 88:1503.
- Li, Y., Zhuang, S., Mustapha, A., 2005. Application of a multiplex PCR for the simultaneous detection of Escherichia coli O157:H7, Salmonella and Shigella in raw and ready-to-eat meat products. J. Meat Sci 71: 402-406.
- Maurer, J.J., Lee, M.D., Lobsinger, C., Brown, T., Maier, M., Thayer, S.G., 1998. Molecular typing of avian Escherichia coli isolates by random amplification of polymorphic DNA. J. Avian Dis 42: 431-451.
- Mayron, M.L., 1987. *Escherichia coli* that causes diarrhoea: enterotoxogenic, enteropathogenic, enteroinvassive, enterohaemorrhagic. J. infect. disease 155: 377-388.
- Nashed, H.N.F., 1993. Salmonella and Enteropathogenic E. coli serotypes in meat and meat products. M. V. Sc. Thesis, (Meat Hygiene), Fac. Vet. Med., Moshtohour, Zagazig University (Benha Branch.).
- Ouf, J.M., 2001. Microorganisms of sanitary importance in some meat products and their additives. PhD Thesis,(Meat Hygine), Fac. Vet. Med., Cairo University.
- Petternel, C., Galler, H., Zarfel, G., Luxner, J., Haas, D., Grisold, A.J., Reinthaler, F.F., Feierl, G., 2014, Isolation and characterization of multidrug-resistant bacteria from minced meat in Austria. J. Food Microbiol 44: 41-46.
- Reinoso, E., Bettera, S., Frigerio, C., DiRenzo, M., Calzolari, A., Bogni, C., 2004. RAPD-PCR analysis of Staphylococcus aureus strains isolated from bovine and human hosts. J. Microbiol Res 159: 245-255.
- Saleh, S.K., 2001. Prevalence of Enterohemorrhagic E.coli in some meat products. J. Egypt. Vet. Med. Ass. 61: 173-178.
- Samaha, I.A., Ibrahim, H.A.A., Hamada, M.O 2012. Isolation of Some Enteropathogens from Retailed

Poultry Meat in Alexandria Province. AJVS. 2012; 37(1): 17-22.

- Scanga, J.A., Grona, A.D., Belk, K.E., Sofos, J.N., Bellinger, G.R., Smith, G.C., 2000. Microbiological cmination of raw beef trimmings and ground beef. J. Meat Sci 56: 145-152.
- Stephan, R., Scontahumacher, S., Zychowska, M.A., 2003. The VIT technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int. J. Food Microbiol 89: 287-290.
- Tamarapu, S., McKillip, J.L., Drake, M., 2001. Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products. J. Food Prot 64: 664-668.
- Thomas, L.C., Gidding, H.F., Ginn, A.N., Olma, T., Iredell, J., 2007. Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J. Microbiol Methods 68: 296-302.
- Tirado, C., Schimdt, K., 2001. Who surveillance programme for control of foodborne infections and intoxications: prelimi¬nary results and trends across greater Europe. J. Infect. 43: 80–84.
- Varnam, A.H., Evans, M.G., 1991. Foodborne pathogens. An illustrated text chapter 13, pp. 267, England. Wolfe Publishing Ltd. ISBN 07234, 1521, 8.
- Xiaodong, X., 2010. Pathogenic E.coli in retail meats. Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2010.
- Zhang, S., Iandolo, J., Stewart, C., 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). J. FEMS Microbiol. Lett. 168: 227–233.
- Zidan, S.A., Tarabees, R., Hassanin, Z.H., 2014. Cmparison of RIDA®QUICK Verotoxin/O157 Test, Verotoxicity Assay And PCR in Detection of Shiga Toxin in Cultures of Human Stool, Animal Faeces and Meat Products. J. Assiut Vet. Med. 60: 14-22.
- Zidan, S.A.M., 2010. The role of shigatoxin producing E.coli in the incidence of diarrhoea in animals and human. PhD Thesis, (Animal Hygiene and Zoonoses), Fac. Vet. Med. Minufyia university, Egypt.