Nutritional risk screening of hospitalized children aged < 3 years

Sanaa Shaaban, May Nassar, Yasmin El-Gendy and Bassam El-Shaer

Faculty of Medicine, Ain Shams University, Cairo, Egypt (Correspondence to: M. Nassar: maie_nassar@yahoo.co.uk).

Abstract

Background: Identification of children at risk of malnutrition is not easily achieved in hospital settings.

Aims: To assess the merits of using the Screening Tool for Risk on Nutritional status and Growth (STRONGkids) as a nutritional screening tool in hospitalized children aged < 3 years and correlate it with the severity of their nutritional derangements.

Methods: This cross-sectional study was conducted on 500 children aged < 3 years admitted to the Children's Hospital, Ain Shams University, Cairo, Egypt. STRONGkids score was used to assess the risk for nutritional derangements and World Health Organization growth charts were used to define underweight, wasted and stunted patients upon admission and discharge.

Results: According to STRONGkids score, 19.6% of patients were low risk, 42.6% were moderate risk and 37.8% were high risk. Out of the enrolled patients, 62.4% were underweight, 58.4% were wasted and 57.8% were wasted. Among the 66 patients with severe wasting, nutritional status improved in 6.06% while deterioration was observed in 13.0% of the moderately wasted patients. STRONGkids score was worse among those who deteriorated, which together with its significant positive correlation with the duration of hospital stay, emphasized that STRONGkids score can be a predictive tool.

Conclusions: The use of STRONGkids screening tool can ensure early identification of children vulnerable to malnutrition, ensuring prompt interventions that may contribute to overall improvements in patient care, as well as shortening hospitalization period.

Keywords: malnutrition, screening, underweight, paediatrics, hospital.

Citation: Shaaban S; Nassar M; El-Gendy Y; El-Shaer B. Nutritional risk screening of hospitalized children aged < 3 years. East Mediterr Health J. 2019;25(1):18–23. https://doi.org/10.26719/emhj.18.019

Received: 13/04/17; accepted: 26/09/17

Copyright © World Health Organization (WHO) 2019. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO license (https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Introduction

Malnutrition in hospitalized children is an important pathological condition and a risk factor for unfavourable outcomes, prolonged hospital stay, delayed recovery and increased care costs. Reduction of dietary intake and increased energy requirements are the main causes of hospital undernutrition (1). The reported prevalence of acute malnutrition in infants and children admitted to hospitals from different countries ranges from 6.1 to 40.9% (2). In children with an underlying disease, higher prevalence of chronic malnutrition (44–64%) was reported in several studies (3).

To prevent hospital-acquired malnutrition, the risk of nutritional depletion needs to be identified as soon as possible, ideally at admission, so that appropriate nutritional intervention can be initiated at an early stage (4). Routine nutritional screening is rarely carried out in paediatric patients because of the lack of a simple and properly validated nutritional screening tool. The current practice of identifying children at risk of malnutrition is reliant on interpretation of anthropometric data and clinical judgement; the reliability of which is dependent on nutritional knowledge of paediatricians (5). Severe cases of malnutrition are easily recognized; however, the identification of children with lesser degrees of malnutrition or at risk of malnutrition, which is also important, is not as easily achieved. Reports of malnutrition prevalence among hospitalized Egyptian infants and children are lacking.

This study was thus designed to assess the merits of using the Screening Tool for Risk on Nutritional status and Growth (STRONGkids) as a nutrition screening tool in hospitalized Egyptian children aged < 3 years and correlate it with the severity of their nutritional derangements.

Methods

This cross-sectional study was conducted on 500 newly hospitalized children recruited from the Children's Hospital, Ain Shams University, Cairo, Egypt, between 1 January and 31 July 2015. There were 297 boys (59.4%) and 203 girls (40.6%). Their mean age was 13.73 [standard deviation (SD) 10.68] months with a range of 1–36 months; 315 patients (63%) were ≤ 12 months old and 185 (37%) were > 12 months old. The mean hospital stay was 6.62 (3.85) days with a range of 2–14 days. They were classified, as surgical or nonsurgical patients and underlying diseases were explored clinically and using laboratory and imaging assessment methods.

For all enrolled children aged < 3 years, we recorded age, sex, diagnosis and length of hospital stay. Nutritional
status was assessed using STRONG\textsubscript{kids} and complete anthropometric evaluation of body weight, body length/height, weight for length/height, skinfold thickness and mid arm circumference was done upon admission and discharge. STRONG\textsubscript{kids} is an easy to apply nutritional risk screening tool developed according to the latest European Society for Parenteral and Enteral Nutrition (ESPEN) guidelines (6). It consists of 4 elements: subjective clinical assessment, high-risk disease, nutritional intake and weight loss or poor weight gain. It is a comprehensive summary of commonly asked questions concerning nutritional issues, combined with a clinical view of the child’s status. Each of the 4 elements of the questionnaire was allocated a score of 1 or 2 points with a maximum total score of 5 points. Patients obtaining 0 points were considered low risk; 1–3 points, moderate risk; and 4 or 5 points, high risk.

Anthropometric measurements were estimated by 2 trained investigators (Y. El-Gendy and B. El-Shaer). Height was measured to the nearest 0.1 cm with a portable stadiometer (Marsden, Rotherham, UK) with children standing bare foot, and recumbent length was measured by an infantometer (Model 416; Seca, Hamburg, Germany). Body weight was recorded to the nearest 0.1 kg using a calibrated baby scale (Model 834; Seca, Germany), with the patients’ wearing only underpants or a clean diaper. Triceps skinfold thickness was measured vertically over the left triceps muscle midway between the acromion and olecranon process using a triceps skinfold caliper (Beta Technology Inc., Houston, TX, USA). Mid arm circumference was measured to the nearest centimetre using a nonstretchable tape (Butterfly, China), with the left arm hanging and relaxed in a sitting or lying position, midway between the tip of the acromion and the olecranon process.

Children with malnutrition were divided according to the World Health Organization (WHO) Global Database on Child Growth and Malnutrition, which uses a Z-score cutoff point of < −2 SD to classify low weight-for-age, low height-for-age and low weight-for-height as moderate undernutrition, and < −3 SD to define severe undernutrition (7).

IBM SPSS version 20 was used for data analysis. Descriptive statistics were generated and numbers and percentages were used. Multivariate logistic regression analysis was performed for predictors of higher STRONG\textsubscript{kids} score. Correlation studies were demonstrated in figures and r values provided (P < 0.05 was considered significant).

### Results

According to disease type 86 (17.2%) patients had chronic illnesses and 414 (82.8%) had acute conditions; the most common causes of which were chest infection in 190 (38%) and gastroenteritis in 176 (35.2%). According to STRONG\textsubscript{kids} score, 98 (19.6%) patients were classified as low risk, 213 (42.6%) as moderate risk and 189 (37.8%) as high risk. Table 1 shows the details of the points given to the screened patients.

Two hundred and eighty-nine (57.8%) patients were underweight (weight for age < −2 Z score), 292 (58.4%) were stunted (height for age < −2 Z score) and 312 (62.4%) were wasted (weight for height < −2 Z score). Among the wasted cases, 66 had severe wasting and the rest moderate wasting. Table 2 shows that among the 66 patients with severe wasting, nutritional state was not altered in 62 (93.93%) while it improved in 4 (6.06%) who became moderately wasted. Nutritional deterioration was observed in 32 (13.00%) children, who had been moderately wasted at admission and progressed to severe wasting, while 214 (86.99%) remained moderately wasted. Also nutritional deterioration was observed in 6 (3.18%) children who had been normal at admission and progressed to moderate wasting while 182 (96.8%) remained normal.

Five of the 6 patients in the normal weight for height group and 28 of the 32 patients in the moderate wasting group who deteriorated were high risk according to STRONG\textsubscript{kids} score. Three of the 4 severely wasted patients who improved were moderate risk according to STRONG\textsubscript{kids} score, and the other one was high risk. Among the 62 severely wasted patients who showed no

---

**Table 1: Nutritional risk screening tool STRONG\textsubscript{kids} results among the studied series**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Subjective clinical assessment (1 point)</td>
<td>215 (43%)</td>
<td>285 (57%)</td>
</tr>
<tr>
<td>Is the patient in a poor nutritional status judged by subjective clinical assessment (diminished subcutaneous fat and/or muscle mass and/or hollow face)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) High-risk disease (2 points)</td>
<td>270 (54%)</td>
<td>230 (46%)</td>
</tr>
<tr>
<td>Is there an underlying illness with a risk of malnutrition or expected major surgery?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Nutritional intake and losses (1 point)</td>
<td>378 (75.6%)</td>
<td>122 (24.4%)</td>
</tr>
<tr>
<td>Is one of the following items present?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive diarrhoea (&gt; 5 times/day) and/or vomiting (&gt; 3 times/day) in the last few days?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced food intake during the last few days before admission (not including fasting for an elective procedure or surgery)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-existing dietetically advised nutritional intervention?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inability to consume adequate intake because of pain?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Weight loss or poor weight gain? (1 point)</td>
<td>440 (88%)</td>
<td>60 (12%)</td>
</tr>
<tr>
<td>Is there weight loss or no weight gain (infants aged &lt;1 year) during the last few weeks/months?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
improvement, 51 were high risk and 11 moderate risk.

Figure 1 demonstrates a significant positive correlation between STRONG_kids score and duration of hospital stay ($r = 0.114, P = 0.01$). However, there was a significant negative correlation between STRONG_kids score and maternal education ($r = -0.633, P = 0.005$). The logistic regression showed that after elimination of all other factors, there was significant association between higher STRONG_kids score and each of the following: low maternal education, high duration of hospital stay and low admission weight for age (Table 3).

**Discussion**

We showed that 17.2% of the patients had chronic illnesses and 82.8% had acute ones. The most common acute illnesses were chest infection in 38% and gastroenteritis in 35.2%. This patient profile is similar to that of Silveira et al. (8) and Saccardo Sarni et al. (9) who reported that respiratory diseases were the main reason for hospitalization. Additionally, Rocha et al. (5) found that the most frequent disease responsible for hospital admission was pneumonia (33%) followed by diarrhoea (6.4%). The noticeable difference in the current study figures is the percentage of hospitalization from gastroenteritis compared to pneumonia, which still has a high disease burden, despite the various preventive efforts of Egyptian governmental and nongovernmental agencies.

According to WHO cutoff values, 62.4% of our patients were underweight, 58.4% were stunted and 57.8% were wasted, which are higher than those for children aged < 5 years (6%, 21% and 8%, respectively) reported in the 2014 Egyptian Demographic and Health Survey (10). Although Rocha et al. (5) reported lower figures for underweight, stunting and wasting in Brazil (18.7, 18.2 and 6.9%, respectively), they mentioned that hospital malnutrition in Latin America can reach up to 70–80%, which agrees with our results. Ozturk et al. (11) found that 31.8% of hospitalized children in Turkey were malnourished and added that well-nourished children do not carry nutritional risk due to hospitalization for other medical reasons. Another Turkish study by Dogan et al. (12) reported that 27% of the hospitalized patients were stunted, 52.4% were underweight and 40.9% were wasted, which is closer to the results in the current study. Malnutrition rates of 32% among hospitalized children in Turkey (13) and 60% among hospitalized children in Thailand (14) further demonstrate the diversity of the published results.

Nutritional deterioration was observed in 13% of the moderately wasted children and 3.19% of patients who were normal at admission. Ferreira and França (15) observed that 20% of children who were well nourished upon admission became malnourished. Rocha et al. (5) reported that 51.6% of 186 hospitalized children lost weight and 9.17% of well-nourished children developed mild malnutrition during hospitalization. Pacheco-Acosta et al. (16), also reported nutritional deterioration in their series of hospitalized children with nonserious disease and advised early

---

**Table 2: Follow-up of nutritional status in children aged < 3 years during hospitalization according to weight for height Z score**

<table>
<thead>
<tr>
<th>Classification</th>
<th>Severe wasting</th>
<th>Moderate wasting</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe wasting, 66 (100%)</td>
<td>62 (93.93%)</td>
<td>4 (6.06%)</td>
<td>0 (0.00%)</td>
</tr>
<tr>
<td>Moderate wasting, 246 (100%)</td>
<td>32 (13.00%)</td>
<td>214 (86.99%)</td>
<td>0 (0.00%)</td>
</tr>
<tr>
<td>Normal weight for height, 188 (100%)</td>
<td>0 (0.00%)</td>
<td>6 (3.19%)</td>
<td>182 (96.8%)</td>
</tr>
<tr>
<td>Total, 500 (100%)</td>
<td>94 (18.8%)</td>
<td>224 (44.8%)</td>
<td>182 (36.4%)</td>
</tr>
</tbody>
</table>

---

**Figure 1: Correlation between STRONG_kids score and duration of hospital stay.**
Évaluation du risque nutritionnel des enfants de plus de trois ans hospitalisés

Résumé

Contexte : L’identification des enfants à risque de malnutrition n’est pas une entreprise facile en milieu hospitalier.

Objectifs : Évaluer les mérites du recours à l’outil d’évaluation du risque pour l’état nutritionnel et la croissance (STRONGkids) en tant qu’outil de dépistage nutritionnel pour les enfants de plus de trois ans hospitalisés et le corrêler à la sévérité des troubles nutritionnels.

Méthodes : La présente étude transversale a été réalisée auprès de 500 enfants de plus de trois ans admis à l’hôpital des enfants de l’Université d’Aïn Shams, au Caire (Égypte). Le score STRONGkids a été utilisé pour évaluer le risque de trouble nutritionnel et les diagrammes de croissance de l’Organisation mondiale de la Santé ont été employés pour définir les enfants présentant une insuffisance pondérale, une émaciation et un retard de croissance à l’admission et à la sortie d’hôpital.

Sermet-Gaudelus et al. (23) ont ainsi fait l’observation que le score initial élevé de malnutrition (24% haut risque) pour les enfants hospitalisés en Europe était supérieur au score initial de la même population allemande (18). Les auteurs notèrent que les patients dont le poids initial était faible avaient un risque initial élevé de malnutrition (24% haut risque) par STRONGkids (19). L’augmentation des figures dans le présent examen peut être attribuée à l’incidence accrue de l’insuffisance pondérale, de l’émaciation et de la croissance insuffisante, qui, si prolongée, peut affecter le poids de manière significative (20).

Le tableau 3 ci-dessous présente les multivariés logistiques de l’analyse des prédictifs de STRONGkids élevé.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significativité</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Âge</td>
<td>0.221 (NS)</td>
<td>2.009</td>
<td>0.988–3.029</td>
</tr>
<tr>
<td>Éducation maternelle</td>
<td>0.002 (S)</td>
<td>8.007</td>
<td>1.979–10.036</td>
</tr>
<tr>
<td>Poids au moment de l’admission</td>
<td>0.01 (S)</td>
<td>6.989</td>
<td>1.952–8.027</td>
</tr>
<tr>
<td>Durée du séjour à l’hôpital</td>
<td>0.001 (S)</td>
<td>8.022</td>
<td>1.995–10.049</td>
</tr>
<tr>
<td>Cause de l’admission</td>
<td>0.128 (NS)</td>
<td>1.071</td>
<td>0.896–1.280</td>
</tr>
</tbody>
</table>

Conclusion

L’usage du STRONGkids pour dépister les enfants hospitalisés de moins de trois ans a révélé que 80% des enfants étaient à risque de malnutrition. De plus, la durée de séjour à l’hôpital s’est inversement liée à l’amélioration du poids, tandis qu’il a été constaté une corrélation positive entre la durée de séjour à l’hôpital et le poids initial. De plus, il a été établi que l’absence de prise de poids pendant le séjour hospitalier était liée à une croissance insuffisante et une croissance de l’organisme mondiale de la Santé. En outre, l’utilisation du STRONGkids a permis de déterminer le risque de malnutrition et d’évaluer la nécessité d’interventions nutritionnelles.

Funding : None.

Competing interests : None declared.
Résultats : Selon le score STRONGkids, 19,6 % des patients présentaient un faible risque, 42,6 % un risque modéré et 37,8 % un risque élevé. Sur les patients participant à l’étude, 62,4 % avaient une insuffisance pondérale, 58,4 % une émaciation et 57,8 % un retard de croissance. Sur les 66 patients présentant une émaciation sévère, l’état nutritionnel s’est amélioré pour 6,06 % et on a observé une détérioration de cet état chez 13,0 % des patients ayant une émaciation modérée. Le score STRONGkids était pire chez ceux ayant connu une détérioration de leur état, ce qui, en association avec sa corrélation positive significative avec la durée du séjour hospitalier, soulignait le fait que le score STRONGkids peut constituer un outil prédictif.

Conclusions : L’utilisation de l’outil de dépistage STRONGkids peut permettre l’identification précoce des enfants vulnérables à la malnutrition, ainsi que la mise en place d’interventions rapides qui peuvent contribuer à des améliorations générales des soins aux patients, ainsi qu’à une réduction de la période d’hospitalisation.

References


