Microbiology of wound infection after caesarean section in a Jordanian hospital

N.M. Kaplan,1 A.A. Smadi,2 M.I. Al-Taani3 and M.A. El-Qudah3

1Department of Pathology, 2Department of Radiology; 3Department of Gynaecology and Obstetrics, Queen Alia Military Hospital, Amman, Jordan.

Received: 31/07/02; accepted: 26/02/03

ABSTRACT To determine the microbiology of wound infection following caesarean section and to evaluate the use of Gram stain for the prediction of subsequent microbiological culture results, 1319 surgical wounds were followed up. We did Gram stains and cultures on exudates from open wounds and on aspirates if the wounds had demonstrable fluid collection. Incidence of post-caesarean wound infection was 8.1%. Ninety-three (86.9%) of 107 infected wounds were culture positive, with Staphylococcus aureus the most frequently found organism (42%). Organisms seen by Gram stain yielded a sensitivity of 96.6%, specificity of 88.9%, positive predictive value of 97.7% and negative predictive value of 84.2% when used to predict positive culture results for bacterial wound infection.

Microbiologie de l'infection de la plaie après césarienne dans un hôpital jordanien

RESUME Afin de déterminer la microbiologie de l'infection de la plaie après une césarienne et d'évaluer l'utilisation de la coloration de Gram pour prévoir les résultats des cultures microbiologiques ultérieures, 1319 plaies chirurgicales ont fait l'objet d'un suivi. Nous avons procédé à une coloration de Gram et à des cultures sur des exsudats de plaies ouvertes et des échantillons prélevés par aspiration si la plaie avait une accumulation de fluides manifeste. L'incidence de l'infection de la plaie après césarienne s'élevait à 8,1 %. Quarante-six (86,9 %) des 107 plaies infectées étaient culture positives, Staphylococcus aureus étant le micro-organisme le plus fréquemment trouvé (42,1 %). Les micro-organismes mis en évidence par coloration de Gram ont donné une sensibilité de 96,6 %, une spécificité de 88,9 %, une valeur prédictive positive de 96,7 % et une valeur prédictive négative de 82,4 % lorsqu'ils étaient utilisés pour prévoir les résultats de culture positifs pour les infections bactériennes des plaies.

1Department of Pathology; 2Department of Radiology; 3Department of Gynaecology and Obstetrics, Queen Alia Military Hospital, Amman, Jordan.

Received: 31/07/02; accepted: 26/02/03

La Revue de Santé de la Méditerranée orientale, Vol. 9, No 5/6, 2003

الحالة الصحية لشرق المتوسط، منظمة الصحة العالمية، الجملة النتائج، العددان ٥-٦٩٣-٢٠٠٣
Introduction

Wound infection after caesarean delivery occurs in 2%–16% of patients, depending on factors such as antibiotic prophylaxis, length of labour, duration of rupture of membranes, duration of internal monitoring, and number of vaginal examinations [1,2]. In one case–control study conducted in a university hospital population, it was reported that 89% of 57 post-caesarean wound infections were culture-positive [3].

The Gram stain has been found to be highly specific but less sensitive in the prediction of post-caesarean endomyometritis [4] and in the early detection of significant burn wound microbial growth [5]. In these studies, infection was defined as microbiologic recovery of pathogenic organisms by culture.

The isolation of genital mycoplasmas from post-caesarean wound infections has also been reported, however pathogenicity in this setting was not precisely known. The Gram stain findings consistently showed predominantly white blood cells and no organisms [6,7].

We conducted this study to define the prevalence of pathogenic organisms in post-caesarean wound infection in our hospital and to evaluate the use of Gram stain to predict subsequent microbiological culture results. Cultures were not done for *Mycoplasma hominis* or *Ureaplasma urealyticum* (no special facilities available). The literature was also reviewed for the predisposing factors and preventive measures of wound infection following caesarean section.

Methods

We followed prospectively a total of 1319 women who underwent caesarean section at the Department of Obstetrics and Gynaecology, Queen Alia Military Hospital in the period between 1 October 1998 and 31 January 2002. The hospital has a fully-equipped, central sterile supply department and a regularly updated disinfection policy. The basic universal management of caesarean section was followed and all patients received 1 g of cephalothin sodium (Keflin) intravenously as prophylaxis at the time of umbilical cord clamping. A wound infection was identified by the presence of purulent discharge from the incision with erythematous cellulitis, induration or pain, and demonstrable fluid collection noted on ultrasound. Women with stitch abscesses, haematomas and seromas, or those developing infection after hospital discharge, were not included in this study.

Purulent exudates were obtained from the open discharging wounds with a sterile cotton swab. Aspirates were obtained by preparing the wound area with alcohol, inserting a sterile needle through the healing incision and aspirating fluid into a sterile syringe. Culturing was done within 1 hour using standard bacteriological inoculation techniques. Blood, chocolate (Diagnolab, Barcelona, Spain) and MacConkey (MAST Diagnostics, Merseyside, United Kingdom) agars were used to isolate Gram-positive and Gram-negative aerobic microorganisms. Schaedler agar (BBL Microbiology Systems, Cockeysville, Maryland, United States of America) was used for the isolation of anaerobes. The aerobic plates were read within 24–48 hours and the anaerobic plates at 48 and 72 hours. The anaerobic plates were kept 1 week before a final negative result was confirmed. Quantitative bacteriology was not performed. Any growth was subsequently identified by standard microbiological methods. Gram stains were also performed and recorded at the time of culturing. Primary culturing and
Gram staining of specimens were done by Medical Laboratory Scientific Officer Grade 1. Microscopic examination of Gram-stained slides and subsequent identification of bacterial isolates were done by an experienced senior microbiologist. The Gram stain results were defined as follows: a positive Gram stain requires that organisms with or without appreciable numbers of white blood cells were seen under oil immersion light microscopy; a negative Gram stain requires that no organisms were seen under oil immersion light microscopy.

The Gram stain results were studied in comparison with isolation of viable organisms in cultures. Sensitivity, specificity, and predictive values were calculated by standard formulae. A true positive was defined as a positive smear from a wound from which an organism was subsequently cultured within 48 hours. A false positive had a positive smear but a negative culture within 48 hours. A false negative had a negative smear but a positive culture within 48 hours of incubation. Fisher exact test was applied as a test of significance.

Results

Of 12,083 women delivered during the study period; 1319 (10.9%) had caesarean section. Of these, 107 (8.1%) developed an abdominal incision infection during hospitalization, 93 of which (86.9%) were classed as positive. A total of 112 organisms were isolated. There were 47 (42%) *Staphylococcus aureus*, 31 (27.7%) *Escherichia coli*, 23 (20.5%) *Klebsiella sp.*, 6 (5.3%) *Pseudomonas sp.*, 3 (2.7%) *Enterococcus sp.* and 2 (1.8%) anaerobes.

The wound was open in 87 (81%) of the 107 cases. Eighty-three of the 87 (95.4%) cultures from open wounds were positive.

Gram stains of the exudates and aspirates were used to predict subsequent microbiological culture results (Table 1). Organisms examined by Gram stain yielded a sensitivity of 96.6%, specificity of 88.9%, positive predictive value of 97.7% and negative predictive value of 84.2% when used to predict positive culture results for bacterial wound infection. The difference between positive and negative Gram staining for prediction of subsequent culture results was statistically significant ($P < 0.0001$) by Fisher exact test.

Discussion

Wound infection is a common surgical complication, often requiring a prolonged hospital stay and leading to increased costs. It represents the most common serious complication of caesarean section. There are at least two mechanisms responsible for the development of post-caesarean wound infection: first, increased amniotic fluid and wound colonization by cervico-vaginal flora due to prolonged rupture of membranes, and second, increased exogenous bacterial contamination by skin flora due to breaks in sterile technique, often accompanying difficult or emergency surgery [3,8].

Table 1 Results of Gram stain and culture of the 107 wound samples

<table>
<thead>
<tr>
<th>Gram stain</th>
<th>Positive culture</th>
<th>Negative culture</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Gram stain</td>
<td>86</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>Negative Gram stain</td>
<td>3</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>18</td>
<td>107</td>
</tr>
</tbody>
</table>

$P < 0.0001$ by Fisher exact test.
The commonest causative organism of post-caesarean section wound infection in our sample was *S. aureus*. One of the major problems facing the laboratory is distinguishing clinically significant, pathogenic strains of coagulase-negative staphylococci from contaminant strains [9]. The importance of coagulase-negative staphylococci is increasing due to the increase in the use of transient or permanent medical devices, such as intravascular catheters and prosthetic devices in seriously ill and immunocompromised patients. All coagulase-negative staphylococci in our study were isolated from open wounds and regarded as skin contaminants. There were only 2 anaerobic organisms isolated.

In all, 10 closed and 4 open wound cultures were negative and did not grow viable organisms. This might be attributed to difficult-to-grow fastidious organisms, inappropriate processing of specimens in the laboratory or the administration of antibiotics prior to specimen collection.

False positive Gram stain results could be due to either stained cotton swab fibres or stain deposits or crystals. False negative Gram stain results could be due to low numbers of organisms or inadequate screening of the smear. Gram stain proved to be simple, rapid, cheap and of acceptable predictive value.

Careful examination of Gram-stained slides is required to determine Gram-stain affinity, morphology and arrangement of the organisms and consequently guide the early choice of the appropriate antimicrobial agent. However it has to be emphasized that Gram stain should not be a substitute for culture.

The reported rate of wound infection after caesarean section ranges widely, largely because of different risk factors among diverse patient populations. In some studies, mean rate of wound infection after caesarean section was found to be 10% among women not receiving prophylactic antibiotics [10,11]. The incidence of post-caesarean section wound infection was 4.5% in a tertiary hospital in Saudi Arabia [12], however the rate in our sample was 8.1%. Underestimation of wound infection rates has always been a concern as some hospitals send comparatively few swabs to the laboratory for examination, consequently any measure of infection that depends on routinely analysed swabs is likely to underestimate the actual level [13]. Similarly, wound infections may present later after discharge from hospital, as women who have a caesarean section usually have a relatively short stay. Hence, without follow-up in the community, underestimation may exist. [14–16], and one study reported that 36% of post-caesarean section wound infections were diagnosed following the patients’ discharge from hospital [15]. Therefore, it is strongly recommended that data on post-discharge surveillance should always be included to realistically estimate the true rates of post-caesarean section wound infection and to allow the implementation of adequate preventive measures.

The incidence of post-caesarean wound infection has been found to be higher following emergency rather than elective caesarean section [8,17,18], in general ward rather than private ward cases [19], in clinic rather than private patients [18] and in patients from lower rather than higher socioeconomic groups [15,20].

Various risk factors have been assessed in relation to post-caesarean surgical site infection [21,22]. Prolonged rupture of membranes [8,19], multiple pelvic examinations [18,19], duration of operation, vertical skin incision, category of surgeon [18], maternal weight, obesity and thickness of subcutaneous tissue at the surgery...
site [15,20] and anaemia [19,22] have been identified as statistically significant factors associated with a high risk of post-caesarean wound infection.

Antibiotic prophylaxis has been found to be the most significant protective factor in reducing both the rate of post-caesarean section wound infection [15,23] and costs [24]. Most clinical trials have shown no significant difference in the efficacy of various antibiotic regimens [25]. However, antibiotic prophylaxis will not prevent infection if poor surgical techniques have been employed, and will result in the selection of resistant bacteria [26,27]. Post-caesarean wound infection caused by enterococci have been significantly associated with the use of cephalosporin prophylaxis [28]. Therefore, anxieties about antimicrobial toxicity (including allergic reactions), the potential to cause an increase in hospital-acquired infection with resistant organisms and the possible masking of early infection in the neonate have suggested that the overall risk–benefit ratio and cost–effectiveness may not be favourable.

A significant reduction in the rate and severity of postoperative endometritis after caesarean section has been reported in association with the application of strict preoperative hygienic routines. However, no similar reduction was found concerning wound infections [29]. The redisinfection of the skin around the caesarean incision before skin closure has been reported to reduce the incidence of postoperative wound infection [30], however no benefit from the use of adhesive plastic drapes could be demonstrated [30,31]. It has also been reported that antibiotic irrigation is safe, showing no noted adverse effects, and is an effective method in reducing post-caesarean section infectious morbidity and wound infections [32].

In a controlled clinical trial to study the treatment of postoperative wound infections following caesarean section or total abdominal hysterectomy, the topical application of crude undiluted honey was associated with faster eradication of bacterial infections, shorter periods of concomitant antibiotic use and hospital stay, acceleration of wound healing, prevention of wound dehiscence with the consequent need for re-suturing, and finally minimal scar formation [33].

References

25. Fernandez H. Antibiotoprophylaxie dans les cesariennes et les interruptions volontaires de grossesse. [Antibiotic prophylaxis in caesarean section and voluntary termination in pregnancy.]

