

ORGANISATION MONDIALE DE LA SANTE BUREAU REGIONAL POUR LA MEDITERRANEE ORIENTALE

SEMINAR ON WATER POLLUTION CONTROL

EM/SEM.WAT.POLL.CIRL./7

Khartoum, 20-27 November 1972

13 October 1972

ENGLISH ONLY

WATER QUALITY REQUIREMENTS FOR DIFFERENT USES

by

Dr P. Benedek^{*} WHO Temporary Adviser

I "STREAM STANDARDS" FOR THE RECIPIENTS' WATER QUALITY

"Stream standards" for the water quality of recipients often contain water quality classes which may be imposed

- (a) regardless of the utilization of the water of watercourses;
- (b) having regard to the utilization of waters in different fields of the production branches (industry, agriculture, etc.)

In case of (a) water quality is considered only, whereas in that of (b) it is attempted to take into account the requirements of users.

Two of the standards concerned with the water quality of recipients are mentioned here.⁽¹⁾ One is the CMEA (COMECON) draft standard. The most important limit values thereof are presented in the <u>Table 1</u>. In the COMECON standard the utilization of watercourses is implicitly taken into consideration by definitions of the I, II, III, IV categories. The possibilities of water uses prescribed for the individual categories are shown in Table 2.

Dr. Eng., Head of Department for Water Quality and Technology, Research Institute for Water Resources Development (VITUKI), Budapest Hungary

The other classification method applied widely in Hungary takes primarily into account the waters' usability in the various fields of production branches (industry, agriculture, etc.).⁽²⁾ The constituents relevant for the individual branches can be seen in Table 3.

II WATER QUALITY REQUIREMENTS OF THE INDIVIDUAL WATER USES

The water quality requirements of the individual water management branches will be discussed as follows:

- 1. Drinking water supply
- 2. Industrial water supply
- 3. Agricultural water supply (irrigation, animal husbandry)
- 4. Fishery
- 5. Recreation
- 6. Hydro-power and navigation.

The <u>classical</u> (physical and chemical) <u>parameters</u> of the water quality will be dealt with in this exposition. To survey the limit values concerning the refractory organics (micropollutants), as well as the biological, bacteriological and radioactive components, respectively, would far exceed the objectives of the present paper.

The effect upon water quality resulting from 1 400 most common chemical, biological, bacteriological and radioactive components and the allowable limit values thereof are dealt with in a paper (3) consisting of 1 000 pages based on 3 800 items of references.

1. Drinking Water Supply

Drinking water (generally in community water supply) is the most important use of waters. The water used for this purpose should meet the highest requirements. This fact, however, does not mean that the limit values are strictest for drinking water, because for particular purposes of industrial water supply the limit values applied should be more severe than those for drinking water. When determining standards for drinking water supply the quality of waters should be tested at two points:

(a) at the source of water supply system (raw water), and

(b) on the site of use. at water taps (treated water: drinking water).

(In the case of subsurface waters diverted to the pipe network without treatment these two points coincide with each other). As a consequence of the growing pollution of surface waters, the water quality at these two points differs more and more. To overcome this problem is the task of water treatment technology. However, water quality standards concerning both points mentioned above are needed for designing technology and operating water works. The standards for drinking water (tap water) and those of raw waters as the raw material of the former are discussed separately.

1.1 Drinking Water Standards

There is a great variety in the drinking water standards valid in different countries of the world. WHO is attempting to coordinate those set forth in the International Drinking Water Standards⁽⁴⁾ in 1958 and subsequently in the European Drinking Water Standards⁽⁵⁾ in 1961. The former recommends minimum requirements which can presumably be met under present conditions all over the world, whereas the latter takes into account that due to the technical and economic position of Europe being above the average world level, higher requirements can also be satisfied there. When elaborating these, the drinking water standards of USA having a considerable past in this regard, were considered. These standards set forth in 1914, 1925, 1942, 1946 show clearly the advance made.⁽⁶⁾

The above standards limit the water quality on the basis of bacteriological, physical, chemical and radioactive components as regards maximum allowed and recommended limit values.

1.2 Raw Water Standards for Drinking Water Supply

The basic principle of raw water standards for drinking water supply is very simple, namely having been treated conventionally (sedimentation, flocculation, filtration, chlorination) it should meet the above drinking water standards.

Numerous experiments have been performed to realize this principle in practice, i.e. to produce raw water standards.

The relevant experiences in the USA are summed up in <u>Table 4</u>, (3)In this compilation raw water (including subsurface waters) is classified into I, II and III classes respectively, according to whether the conversion thereof into drinking water needs only disinfection, conventional treatment or a special treatment occasionally.

Table 5 contains a similar compilation but for surface waters only on the basis of West-German data.⁽⁷⁾ In group A, drinking water can be obtained at a reasonable cost; the treatment of waters in group B can be performed uneconomically only, while in the case of group C the treatment for drinking water is out of question.

The various raw water standards are compatible as shown by Table 6, wherein the following three prescriptions are compared with each other

- (a) Column 2 of Table 4 based on experiences in USA,
- (b) Column A of Table 5 based on West-German data,
- (c) Class 1 in CMEA (COMECON) draft standard (water for community water supply).

2. Industrial Water Supply

Water is one of the most important auxiliaries in industrial production. It may play several roles: as one part of the product similarly to other raw materials, or used either for delivering and cleaning, or as coolant and steam, or in producing energy. Quality of water used for industrial purposes may vary considerably depending on the type of plant. This is why it is impossible to elaborate unified standards for waters used in the various industrial processes. The water may have more functions within the plant, and the water quality requirements thereof may differ from each other considerably. A typical case is where a factory needs different qualities for the purposes of boiler feed-water, cooling water and process water.

Industry tends to require drinking water quality for its production processes. This may lead to wastage where a poorer water quality would also be sufficient. Where a higher quality is required than that of drinking water (e.g. feed-water to boiler of high pressure), the industrial plants usually acknowledge their own responsibility for further water treatment.

Stability is a basic requirement of water quality in every branch of industry. Once production is embarked upon or switched over to a certain water quality suitable for a certain technology, any change in water quality involves significant economic losses for the plant (8.9).

Different adverse effects of inadequate or changing water quality are liable to appear in industrial production. These can be grouped as follows: (3)

Adverse effects in final products

- (a) chemical reactions
- (b) biological reactions
- (c) corresion
- (d) discolouration, taint

Damages in manufacturing equipment

- (a) corrosion
- (b) cavitation
- (c) scale formation

Capacity decrease

- (a) deposits in equipment
- (b) slurry formation in equipment
- (c) foam formation in equipment.

The synthesis of water quality requirements of industries can amply be found in literature on the subject (8, 9, 10, 11, 12, 13, 14). These are, however, rather contradictory since water quality requirements depend on the current technology. An abstract of the relevant East-German prescriptions is presented in Table 7.

Details of the water quality requirements in the different industrial branches would exceed the objectives of this paper, therefore only the references available are enumerated below according to the various branches of industry.

aluminium industry⁽¹⁵⁾ (a) (b) concrete fabrication^(16,17) (c) tannerles (18,19) pulp and paper industry⁽¹⁸⁾ (d) sugar refinery⁽¹⁹⁾ (e) fermentation (20, 21, 22, 23) (f) photography (18) (g) electro plating^(14, 18) (h) cooling water^(18, 24, 25) (1) ice production⁽²⁶⁾ (J) boiler feed-water^(8, 14, 27) (k) chemical industries (9, 11, 19) (1)(22, 28) (m) plastic industry⁽¹⁹⁾ (n) synthetic fibre manufacturing (19, 29) (0)brewery^(18, 20, 21, 3) (p) (18, 31) bakery (q)

- (r) dairy⁽²²⁾
- (s) textile industry^(18, 32)
- (t) soft drinks industry (30, 33)
- (u) 1ron- and steel industry (18, 34, 35)

3. Agricultural Water Supply

3.1 Irrigation

The literature on the subject presents a detailed review of water quality components affecting adversely the use of water for irrigation as well as the more or less harmful concentrations thereof. (3) Owing to different soil and agrotechnical conditions a certain prescription cannot be applied in all countries. Hungarian standards divide waters into three groups depending on the total dissolved salts, percentage of sodium and phenolphtalein alkalinity in terms of sodium carbonate: (36)

- A. Waters usable for every soil
- B. Waters usable for particular soils
- C. Waters usable exceptionally.

Table 8 can be referred to for details. It is to be noted that marks a, b and c in the table mean waters of hydrocarbonate, hydrocarbonate-sulphate and hydrocarbonate chloride type respectively.

3.2 Animal Husbandry

The generally adopted view is that water suitable for human purposes is suitable for animals. Nevertheless this requirement cannot always be met, and it is not necessary always to observe it.

Investigations have shown that the salt tolerance of the most important species of animals which play a role in animal husbandry is higher than that of man. The safe upper limits for salt content are presented in Table 9, adapted from Australian data.⁽³⁷⁾ According to US investigations⁽³⁾ based on total salt content, waters are classified into four classes from the point of view of animal husbandry (<u>Table 10</u>).

Regardless of total salt concentration, particular salts are specifically poisonous for animals even in low concentration. Some harmful substances in waters are nitrates, chlorides and the salts of selenium and molibden. These can cause physiological disturbances in egg and dairy productions.

Data in <u>Table 11</u> represent the classical water quality components. It should be noted that threshold concentration means the limit value at which the livestock is liable to suffer a slight damage. The lower concentration is practically ineffective.

4. Fishery

Fish stock not only obtains food from water but that is the medium of its existence. Thus, the abundance of literature dealing with the effect of pollution on aquatic life is understandable. Unfortunately, the comparable interpretation of numerous studies is very difficult, because the investigations generally were conducted under different conditions, with different methodologies applied (3, 37). Besides in principle it is very difficult to impose unified standards owing to the changing effect of harmful pollutants on fish:

(a) according to the size, age and physiological conditions of species,

(b) according to the physical and chemical composition of waters,(c) depending on the hydrological conditions (low water, high water).

In <u>Table 12</u> the limit values of some physical and chemical components are presented for which the limit values of literature - connected with the fresh-water fisheries - are in fairly good agreement. (3,37,38) It should be said that the data serve for information only and that satisfactory results can only be obtained occasionally by biological experiments. The methodology of these experiments is standardized in the developed countries.⁽³⁹⁾

5. Recreation

Water usable for recreation (swimming, water sports) should meet the following three requirements: (40, 41)

(a) it should give a good impression,

(b) it must not contain harmful pollutants for human health internally or externally,

(c) it must not contain more pathogenic bacteria than allowed.

Prescriptions concerning (a) and (b) are of qualitative, describing character. Only the requirement (c) connected with the pathogenic bacteria has numerical limit values.

6. Hydro-power and Shipping

The following pollutants are undesirable from the aspect of hydro-power and shipping: (3)

(a) strong acids, alkalies, salt solutions of high concentration causing corrosions and cavitation,

(b) substances which result in gas formation may cause corrosion finally,

(c) algae, fungi which may cause clogging in pipelines or cling to ships,

(d) floating oil film which may give rise to risk of fire.

It is understandable that numerical limit values have not been given for the above pollutants in the literature because by the time the water becomes dangerous for ship and turbines it had been previously unsuitable for other purposes of water supply.

REFERENCES

- (1) Unified water quality criteria and the classification principles thereof, OVH, Budapest, 1964
- (2) Water quality investigations and the evaluation thereof. Instruction No. 62931/1966 of National Water Authority OVH, Budapest
- (3) Mc Kee, J.E., Wolf, H.W. Water Quality Criteria, State Water Quality Control Board, California, 1963
- (4) International Standards for Drinking Water, World Health Organization, Geneva, 1958
- (5) European Standards for Drinking Water, World Health Organization, Geneva, 1961
- (6) Drinking Water Standards, Public Health Service, Interstate Quarantine Federal Register 2152, 1962, marc.6.
- (7) Eignung von Oberflächenwasser als Grundstoff fur die öffentliche Trinkwasserversorgung, Deutscher Verein von Gas- und Wasserfächmännern, Frankfurt 1962
- (8) Love, S.K. Water Quality Definition and Research, J. AWWA, 1961, 1366
- (9) Derby, R.L.: Water Use in Industry, Proceedings ASCE, 1957, IR 2. 1364
- (10) Wolman, A.: Characteristics and Problems of Industrial Water Supply, J. AWWA, 1952. 279
- (11) Lauterbach, et. al.: Industrial Water Use, J. AWWA, 1952. 1033
- (12) Adams, C.D.: Quality Control of Industrial Water, J. AWWA, 1951. 579
- (13) Howson, L.R., <u>et. al.</u>: Domestic and Industrial Water Supply and Pollution, SIW, 1951. 210
- (14) Nordell, E.: Water What It Contains, Chemical Engineering, 1955. 183

- (15) Conklin, H.L.: Water Requirements of the Aluminium Industry,
 U.S.G.S. Water Supply Paper 1330-C. 1956
- (16) Parker, C.D.: Concrete Corrosion by Bacteria, Sewage Works Journal, 1948. 177
- (17) Starkey, R.L.: Transformation of Sulfur by Micro-Organisms, Industrial Engineering Chemistry, 1956. 1429
- (18) Nordell, E.: Water Treatment for Industrial and other Uses, Reinhold Publishing Corporation, New York, 1951
- (19) Shreve, R.N.: Chemical Process Industries, Mc Graw-Hill, New York, 1945
- (20) Boruff, C.S. <u>et. al.</u> Water for Grain Alcohol Distilleries, J. AWWA. 1944. 789
- (21) Lammers, F.J.: Water Purification in the Modern Brewery and Distillery, J. AWWA, 1935. 670
- (22) Bonnet, J.: Water in the Agricultural Industries, La Tribune du CEBEDEAU, 1955. 70
- (23) Prescott, S.C., Dunn, C.G.: Industrial Microbiology, Mc Graw-Hill, New York, 1949
- (24) Powell, S.T.: Water Conditioning for Industry, Mc Graw-Hill, New York, 1954
- Hach, G.B., Rice, O.: Corrosion Control with Threshold Treatment,
 J. AWWA, 1961. 80⁸
- (26) Toyoda, K., et. al.: Investigation of Water for Ice Manufacturing J. AWWA, 1961. 80
- (27) Gilwood, M.E., et.al.: Silica Removal Characteristics of Highly Basic Anion Exchanges, J. AWWA, 1952. 1057
- (28) Lancefield, S.: Water for the Canning Factory, J. AWWA, 1938. 167
- (29) Eld, E.F., Flentje, M.E.: Quality Improvements Resulting from Industrial Need, J. AWWA,1961. 283

- (30) Mott, K.: The Water Quality Requirement of the Soft Drink Industry, J. AWWA, 1940. 1512
- (31) Siebel, F.P.: The Use of Water in Baking, J. AWWA, 1928. 337
- (32) Behman, A.S.: Water for the Textile Industries, Water Works and Sewage, 1932. 47
- (33) Haywood, R.W.: Proceeding Water for Industry, J. AWWA, 1949. 856
- (34) Wolman, A.. Industrial Water Supply from Processed Sewage Treatment Plant Effluent at Baltimore, Sewage Works Journal, 1948. 15
- (35) Taylor, A.: Taylor, N.: Treatment Conserves Water at Steel Plant, Civil Engineering, 1943. 579
- (36) Darab, K.: Application of Soil Genetic Principles in the Irrigation of the Great Hungarian Plain, OMMI, Budapest, 1962
- (37) Mc Gauhey, P.H.: Engineering Management of Water Quality, Mc Graw-Hill, New York 1968
- (38) Aquatic Life Water Quality Criteria, Sewage and Industrial Wastes, 1955. 321
- (39) Standard Methods for the Examination of Water, Sewage and Industrial Wastes, 11th Edition (1960), American Public Health Association, Inc. 1790. Broadway, New York 19, N.Y.
- (40) Stevenson, A.H.: Water Quality Requirements for Recreational Uses, Sewage and Industrial Wastes, 1956. 795
- (41) Garber, W.F.: Bacteriological Standards for Bathing Water, Sewage and Industrial Wastes, 1956. 975.

TABLE I

CLASSIFICATION OF WATERCOURSES ACCORDING TO THEIR QUALITY

(Abstract from "Water Pollution Control", Budapest, 1966, WHO Copenhagen)

The following table comprises the classification concept of surface waters in the (CMEA) countries.

It may be noted that the substances governing this classification have been deal't with in the WHO International Standards for Drinking Water Report.

COUNCIL FOR MUTUAL ECONOMIC AID (CMEA)

APPROVED BY THE HEADS OF THE WATER MANAGEMENT AUTHORITIES OF MEMBER STATES OF THE CMEA AT THEIR SECOND SESSION, 22 JUNE 1963

				Class	
		Unit	I	II	III
Al	Dissolved oxygen	(0 ₂) mg/l	> 6	₹5	→ 3
			The results of samples not t	of night and to be taken :	morning into account
A2	Dissolved oxygen % of saturation	(0 ₂) %	>75 The results of samples not t	> 50 of night and to be taken 1	⇒ 30 morning into account
A3	BOD5	(0 ₂) mg/l	> 5	>10	>15
A 4	Oxidability per- manganate value KMnO4	(0 ₂) mg/l	<10 Excluding wat substances	< 15 ters containt	< 25 Ing humic
A5	Free hydrogen sulfide	H ₂ S mg/1	N.D.*	N.D.*	0.1
A6	Biological condi- tion, saprobity	oligo-beta beta-meso alpha-meso	-		alpha-meso
Bl	Chloride ions	Cl mg/l	<200	< 300	< 400
B2	Sulfate lons	S04 [−] mg/1	< 150	< 250	<300

N.D. signifies the presence of a quantity too small to be demonstrated

		Un	it	т	Class	TTT
				L	ـــــــــــــــــــــــــــــــــــــ	ـــــــــــــــــــــــــــــــــــــ
B3	General hardness	Germ degr	an ees	< 20	≤ 30	< 40
B4	Calcium ions	Ca ²⁺	mg/1	<150	<200	<300
B5	Magnesium 10ns	Mg ²⁺	mg/l	< 50	< 100	< 200
вб	Dry re sidue of matter in solution	1	mg/l	<500	< 800	∠1 200
B7	Suspended matter i flow in dry weathe	.n e r	mg/l	< 20	< 30	< 50
C'1	Ammonium ions	νнţ	mg/l	< 1	८ 3	< 10
C'2	Nitrate 10ns	NO"3	mg/1	< 13	< 30	-
C'3	pH	-	-	6.5-8.5 excluding na	6.0-8.5 aturally acto	5.5-9.0 1 waters
C'4	Total iron	Fe	mg/1	<pre>< 0.5 excluding wa substances</pre>	<la></la>	< 1.5 ning humic
C'5	Manganese	Mn	mg/l	< 0.1	4 0.3	< 0.8
C'6	Volatile phenols with water vapour		mg/l	< 0.002+	<0.02	-
C'7	Detergents (active washing substances	e 5)	mg/l	< 1 Only for and For other su limits must appropriate available.	<pre>< 2 lonic washing ibstances sp be establish methods of a</pre>	<pre>< 3 g substances. ectal maximum hed where analysis are</pre>
c'8	Cyanide lons	CN ⁻	mg /1	∠0.01 Take into ac	<pre></pre>	< 0.1 und cyanides
C'9	Temperature	-	°C	as necessary establish it climatic cor	r. Each cou ts own depen- nditions.	ntry snould ding on
C'10) Smell and taste	-		Not notice- able	Not out the ordinary	of At the most only slightly out of the ordinary

TABLE 1 (cont'd)

EM/SEM.WAT.POLL.CTRL./7 page 15

				Class	
		Unit	I	II	III
C'11	Colouring	-	At the press exact data : of analytics be included depending on	ent time indi is impossible al difficulti in the class n given circu	cation of on account les. Can dification mstances.
C'12	Oils	-	Invisible	Traces only	Traces only
C'13	Coli tıtre	-	0.1 In determin content in titre value	0.01 ing the gener accordance wi s	- ral coli 1th the lowest
C'14	Pathogenic microbes	-	N.D.*	N.D.*	N.D. *

TABLE 1 (cont'd)

*N.D. signifies the presence of a quantity too small to be demonstrated.

CATEGORIES RELATING TO TYPES OF UTILIZATION

IN THE CMEA DRAFT STANDARD

Category	Type uf Use	Characterization
I	(a) community water supply(b) food industry and other industries with similar	
	requirements (c) trout fishery	Clean water
	(d) bathing with high requirements	
II	(a) fishery excluded trout fishery	
	(b) sport and recreation (c) animal husbandry	Slightly polluted
III	(a) agricultural irrigation (b) industry	Polluted water
IV	usable after expensive treatment only	Slightly polluted

COMPONENTS TO BE TAKEN INTO CONSIDERATION IN COMMUNITY, INDUSTRIAL AND AGRICULTURAL WATER SUPPLY

(Abstract from the Instruction of Hungarian National Water Authority No. 62.931/1966)

Branch	Component
Community water supply	Oxygen consumption
	Oxygen saturation
	pH
	Cyanide
	Ether extract
	Phenols
	Detergents (anionactive)
Industrial Water Supply	 рН
	Total hardness
	Total dissolved matter
	Total suspended solids
	Ether extract
Irrigation	pH
	Total dissolved matter
	Sodium percentage
Agriculture, Fishery	Oxygen saturation
	Ammonium
	Sulphide
	Ether extract
	Phenols
	Biological conditions

Component	Dimension	I	II	III
		Raw water of excellent (very good) quality (needs dis- infection only)	Raw water of good quality (needs the treatment customary)	Raw water of bad quality (needs a specific treatment)
BOD- (average)	mc /1	0.75 to 1.5	1.5 to 2.5	> 2.5
BOD ₅ (max.)	mg/1	1.0 to 3.0	3.0 to 4.0	> 4.0
Dissolved oxygen (average)	mg/l	4.0 to 7.5	4.0 to 6.5	4.0
Oxygen saturation (average)	К	> 75	75 to 60	-
pH (average)	-	6.0 to 8.5	5.0 to 9.0	3.8 to 10.5
Chloride	mg/1	< 50	50 to 250	> 250
Fluoride	mg/1	< 1.5	1.5 to 3.0	> 3.0
Phenol	mg/l	-	0.005	∽ 0,005

RAW WATER LIMIT VALUES ON THE BASIS OF US EXPERIENCES

Component	Dimension	A Water suitable for water treat- ment at real cost	B Water suitable for water treat- ment at great cost	C Water unsuitable for water treat- ment
Oxygen saturation	K	► 60	60 to 30	< <i>3</i> 0
pН	-	6 to 9	5 to 6 or 9 to 10	< 5, > 10
Chloride-ion	mg/1	< 150	150 to 350	> 350
Phenol	mg/l	< 0.005	0.1	> 0.1
Total hardness	German degree	< 20	20 to 30	> 30
Iron	mg/l	< 0. 5	0.5 to 1.5	> 1.5
Manganese	mg/l	< 0.25	0.25 to 0.5	> 0.5
Ammonium-ion	mg/l	< 0.2	0.2 to 0.1	> 1
Nitrite-ion	mg/l	traces only	< 2	> 2

TABLE 5 RAW WATER LIMIT VALUES FOR SURFACE WATER ON THE BASIS OF WEST GERMAN EXPERIENCES

COMPARISON OF VARIOUS DRINKING RAW WATER STANDARDS					
Component	Dimension	Raw water of good quality (needs customary treatment) USA	Water suitable for water treat- ment at real cost GFR	Water suitable for community water supply CMEA	
BOD ₅	mg/1	< 3.0 - 4.0	-	< 5.0	
Dissolved oxygen	mg/l	4.0 - 6.5	-	> 6.0	
Oxygen saturation	%	60 - 75	> 60	> 75	
pH	-	5.0 - 9.0	6.0 - 9.0	6 . 5 - 8 .5	
Chloride-ion	mg/l	50 - 250	< 150	< 200	
Phenol	mg/l	0.005	< 0.005	< 0.002	
Total hardness	German degree	-	< 20	∠ 20	
Iron	mg/l	-	< 0.5	८ 0.5	
Mang a nese	mg/l	-	< 0.25	< 0.1	
Ammonium-10n	mg/1	-	< 0.2	1.0	

WATER QUALITY LIMIT VALUES FOR SEVERAL INDUSTRY BRANCHES RELATING TO THIRTEEN WATER QUALITY COMPONENTS BASED ON DATA OF GDR

Component	Dimension	Industry branch					
		Tannery	Pulp paper ind.	Concrete fabric- ation	Sug ar Refinery	Food Ind.	
Dissolved oxygen	mg/l	4	4	4	-	5	
BOD5	mg/l	12	12	12	-	6	
Oxygen consumption (KMnO4)	mg/l	15	15	15	-	10	
Chloride-ion	mg/l	250	-	250	250	100	
Sulphate-ion	mg/l	250	-	250	250	100	
Total hardness	German degree	8	8	16	16	8	
Total sus- pended solids	mg/l	20	10	20	-	10	
Temperature	°C	-	-	26	-	-	
Iron	mg/l	0.6	0.2	0.2	-	0.2	
Manganese	mg/1	0.6	0.2	0.6	-	0.2	
Heavy metals	mg/l	0.15	0.1	0.15	-	0.05	
Cyanide	mg /1	0.1	0.1	0.1	-	0.0	
Phenols	mg/l	1.0	0.2	0.2	-	0.02	

		Industry branch				
Component	Dimension	Cooling waters	Boller feed water	Loundry works	Chemical industry	textile industry
Dissolved oxygen	mg/l	-	-	6	5	5
BOD ₅	mg /1	-	12	3	6	6
Oxygen consumption (KMnO4)	mg/l	-	15	5	10	10
Chloride-10n	mg/l	250	-	100	250	~
Sulphate-10n	mg/l	250	-	100	250	-
Total hardness	Ge r man degree	16	8	4	4	8
Tot al suspended solids	mg/l	20	20	5	10	10
Temperature	°C	22	26	-	-	-
Iron	mg/l	0.6	-	0.2	0.2	0.2
Manganese	mg/l	0.6	-	0.2	0.2	0.2
Heavy metals	mg/1	0.15	0.15	0.05	0.05	0.1
Cyanıde	mg/l	0.1	0.1	0.1	0.1	0.1
Phenols	mg/l	0.2	0.2	0.2	0,2	0.2

TABLE 7 (cont'd)

WATER CLASSIFICATION FROM THE ASPECT OF APPLICABILITY FOR IRRIGATION

Apj	plicability	Type of soll	Type of water	Total dissolved salt	Sodium per- centage	Phenol- ftalein alkalı- nity
			mg/1	mg/1	mg/1	
۵)	Appliashle to			< 500	4 35	< 10
л)	every soil	-	a h	€ 500	< 40	< 10
	cvery borr	-	c	€ 500	< 45	< 10
— В)	Applicable to	To loam soils	a	500- 650	< 35	< 10
	non-sodaic		b	500-650	< 40	< 10
	soils		с	500-650	< 45	< 10
		to sandy-loam	a	650-800	4 35	< 10
		soils	Ъ	650-800	< 40	< 10
			с	650-800	< 45	< 10
		to sandy soils	a	800-1 000	< 35	<10
			b	800-1 000	2 40	<10
			с	800-1 000	< 45	< 10
<u>c)</u>	Applicable	to setes of		< 800	30_65	10-50
0)	ercentionally	nasture lands	a h	< 800	40 -7 5	10-50
	(to sodaic		c	<800	40-75	10-50
	SOLLSJ	to sodaic	a	>1 000	> 35	> 50
		pasture lands	b	>1 000	> 40	3 50
		with sandy subsolls	C	>1 000	> 45	> ⁵⁰

THE UPPER LIMIT OF SALT CONTENT BASED ON AUSTRALIAN DATA

Animal Species	Threshold salt concentration
poultry	2 900
pig	4 300
horse	6 400
dairy cattle	7 200
meat cattle	10 000
lamb	12 900

TABLE 10

CLASSIFICATION OF WATERS USED FOR ANIMAL HUSBANDRY ON THE BASIS OF TOTAL DISSOLVED SALT ACCORDING TO US INVESTIGATIONS

Category		Total dissolved salt (mg/1)	
I	very good	1 000	
II	good	1 000 - 4 000	
III	satisfactory	4 000 - 7 000	
IV	unsatisfactory	7 000	

GUIDING NUMBERS TO CONSIDERATION OF WATER QUALITY

Component	Dimension	Threshold concentration	Limit concentration
Calcium-ion	mg/1	500	1 000
Magnesium-ion	mg/l	250	500
Sodium-10n	mg/l	1 000	2 000
Chloride-ion	mg/l	1 500	3 000
Nitrite-ion	mg/l	200	400
Sulphate-10n	mg/1	500	1 000
pH	-	6.0 - 8.5	5.6 - 9.0

FROM THE ASPECT OF LIVESTOCK

TABLE 12

LIMIT VALUES FOR WATER QUALITY RELATING TO FISHERY

	concentration
mg/1	2 000
-	6.5 - 8.5
mg/l	5.0
mg/l	1.0
mg/l	0.05
mg/l	0.02
mg/l	0.02
mg/l	0.01
mg/l	0.05
mg/1	0.1
	mg/l - mg/l mg/l mg/l mg/l mg/l mg/l mg/l